共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve
Finding a means to generate, control and use spin-polarized currents represents an important challenge for spin-based electronics, or 'spintronics'. Spin currents and the associated phenomenon of spin accumulation can be realized by driving a current from a ferromagnetic electrode into a non-magnetic metal or semiconductor. This was first demonstrated over 15 years ago in a spin injection experiment on a single crystal aluminium bar at temperatures below 77 K. Recent experiments have demonstrated successful optical detection of spin injection in semiconductors, using either optical injection by circularly polarized light or electrical injection from a magnetic semiconductor. However, it has not been possible to achieve fully electrical spin injection and detection at room temperature. Here we report room-temperature electrical injection and detection of spin currents and observe spin accumulation in an all-metal lateral mesoscopic spin valve, where ferromagnetic electrodes are used to drive a spin-polarized current into crossed copper strips. We anticipate that larger signals should be obtainable by optimizing the choice of materials and device geometry. 相似文献
2.
In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial. 相似文献
3.
Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor
The ability to manipulate and monitor a single-electron spin using electron spin resonance is a long-sought goal. Such control would be invaluable for nanoscopic spin electronics, quantum information processing using individual electron spin qubits and magnetic resonance imaging of single molecules. There have been several examples of magnetic resonance detection of a single-electron spin in solids. Spin resonance of a nitrogen-vacancy defect centre in diamond has been detected optically, and spin precession of a localized electron spin on a surface was detected using scanning tunnelling microscopy. Spins in semiconductors are particularly attractive for study because of their very long decoherence times. Here we demonstrate electrical sensing of the magnetic resonance spin-flips of a single electron paramagnetic spin centre, formed by a defect in the gate oxide of a standard silicon transistor. The spin orientation is converted to electric charge, which we measure as a change in the source/drain channel current. Our set-up may facilitate the direct study of the physics of spin decoherence, and has the practical advantage of being composed of test transistors in a conventional, commercial, silicon integrated circuit. It is well known from the rich literature of magnetic resonance studies that there sometimes exist structural paramagnetic defects near the Si/SiO2 interface. For a small transistor, there might be only one isolated trap state that is within a tunnelling distance of the channel, and that has a charging energy close to the Fermi level. 相似文献
4.
Electronic spin transport and spin precession in single graphene layers at room temperature 总被引:1,自引:0,他引:1
Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent. 相似文献
5.
在介观半导体环中,自旋-轨道耦合的存在直接影响持续自旋流的流动.作为自旋分裂的结果,持续自旋流并不与电荷流成一定的比例.我们研究有Dresselhaus自旋-轨道相互作用存在的介观半导体环中持续自旋流的性质. 相似文献
6.
研究了介观金属环1个通道上的量子干涉晶体管的栅极电压及其在通道上的位置对电子相干性的影响。理论结果表明,一般情况下改变栅极长度L6(下通道长度L2)会使透射率以π(2π)周期性变化。同时发现栅极在通道上的位置对透射率的周期性不产生影响,仅改变透射率的大小。但当kL6=nπ时,透射率为kL2的函数,周期为π;当kL6=(2n+1)2π时,量子干涉晶体管的位置不影响电子透射率的相干性;当上、下通道长度相等,且kL2=kL=nπ时,透射率恒为1,与栅极长度及其在通道上的位置无关。 相似文献
7.
The processing of quantum information based on the electron spin degree of freedom requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting--which depends on the g-factor--by using magnetic fields, but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature. 相似文献
8.
建立了在含自旋-轨道耦合相互作用的二维介观多端格子模型中求解散射波函数,进而在Landauer-Buttiker框架中得到计算多端的电导和自旋电导,以及任意非平衡局域物理量(如电流驱动之下的非平衡自旋累积)的一般方法.作为散射波函数法的一个直接应用,我们研究了具有Rashba型自旋-轨道耦合的二维电子气的二端结构,在给定电流密度条件下,我们得到线性输运区的非平衡自旋累积效应的结果,发现与其它的理论结果和最近的实验结果是定性一致的. 相似文献
9.
自旋注入效率的电学探测 总被引:1,自引:1,他引:1
为了探测从铁磁FM(ferromagnet)到半导体SM(semiconductor)的自旋注入效率,可以通过增加另一个铁磁体来形成一个铁磁/半导体/铁磁(FM/SM/FM)的双结,通过直接测量此双结的磁阻效应,从而得到从铁磁(FM)到半导体(SM)节的自旋注入效率。理论分析发现其隧道磁阻TMR(tunnelling magnetore resistance)和自旋注入效率SIE(spin injection efficiency)之间有个普适关系:隧道磁阻是自旋注入效率的平方。这种平方关系在顺序隧穿区和散射区都成立,除非双结间半导体层厚度很长导致自旋翻转效应的发生或中间的半导体层厚度小于其相位相干长度而导致磁阻中出现量子相干效应。 相似文献
10.
Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior. 相似文献
11.
Liquid crystalline behaviour is generally limited to a select group of specially designed bulk substances. By contrast, it is a common feature of simple molecular monolayers and other quasi-two-dimensional systems, which often possess a type of in-plane ordering that results from unbinding of dislocations-a 'hexatic' liquid crystalline phase. The flow of monolayers is closely related to molecular transport in biological membranes, affects foam and emulsion stability and is relevant to microfluidics research. For liquid crystalline phases, it is important to understand the coupling of the molecular orientation to the flow. Orientationally ordered (nematic) phases in bulk liquid crystals exhibit 'shear aligning' or 'tumbling' behaviour under shear, and are described quantitatively by Leslie-Ericksen theory. For hexatic monolayers, the effects of flow have been inferred from textures of Langmuir-Blodgett films and directly observed at the macroscopic level. However, there is no accepted model of hexatic flow at the molecular level. Here we report observations of a hexatic Langmuir monolayer that reveal continuous, shear-induced molecular precession, interrupted by occasional jump discontinuities. Although superficially similar to tumbling in a bulk nematic phase, the kinematic details are quite different and provide a possible mechanism for domain coarsening and eventual molecular alignment in monolayers. We explain the precession and jumps within a quantitative framework that involves coupling of molecular orientation to the local molecular hexatic 'lattice', which is continuously deformed by shear. 相似文献
12.
通过线性展开包含自旋转移矩项的Landau-Lifshitz-Gilbert(LLG)方程,并且使用稳定性分析的方法,建立了垂直磁各向异性自旋阀结构中的磁性相图。研究发现:通过调节外磁场强度的大小以及直流电流密度,可实现磁矩从稳定态到进动态之间的转化,以及在不同稳定态之间的翻转。 相似文献
13.
The role of magnetic domains (and the walls between domains) in determining the electrical properties of ferromagnetic materials has been investigated in great detail for many years, not least because control over domains offers a means of manipulating electron spin to control charge transport in 'spintronic' devices. In contrast, much less attention has been paid to the effects of domains and domain walls on the electrical properties of antiferromagnets: antiferromagnetic domains show no net external magnetic moment, and so are difficult to manipulate or probe. Here we describe electrical measurements on chromium--a simple metal and quintessential spin density wave antiferromagnet--that show behaviour directly related to spin density wave formation and the presence of antiferromagnetic domains. Two types of thermal hysteresis are seen in both longitudinal and Hall resistivity: the first can be explained by the quantization of spin density waves due to the finite film thickness (confirmed by X-ray diffraction measurements) and the second by domain-wall scattering of electrons. We also observe the striking influence of the electrical lead configuration (a mesoscopic effect) on the resistivity of macroscopic samples in the spin density wave state. Our results are potentially of practical importance, in that they reveal tunable electrical effects of film thickness and domain walls that are as large as the highest seen for ferromagnets. 相似文献
14.
《科学通报(英文版)》1996,41(9):729-729
15.
16.
17.
利用不变量理论讨论介观LC串联电路系统在交流电压源作用下,得到介观LC电路系统的态随时间演化,结果表明在一定条件下系统态函数具有压缩效应. 相似文献
18.
基于介观电路的电荷是量子化的这一事实,应用正则量子化方案给出介观RLC电路的量子化方法和库仑阻塞条件,研究结果表明:存在耗散元件的介观电路的库仑阻塞效应不仅与电路的非耗散有关,而且与耗散电阻有关,随耗散电阻的增大,库仑阻塞现象更加明显。 相似文献
19.
基于介观电路的电荷是量子化的这一事实熏应用正则量子化方案给出介观RLC电路的量子化方法和库仑阻塞条件.研究结果表明押存在耗散元件的介观电路的库仑阻塞效应不仅与电路的非耗散有关熏而且与耗散电阻有关.随耗散电阻的增大熏库仑阻塞现象更加明显. 相似文献
20.
Quantum control of individual spins in condensed-matter devices is an emerging field with a wide range of applications, from nanospintronics to quantum computing. The electron, possessing spin and orbital degrees of freedom, is conventionally used as the carrier of quantum information in proposed devices. However, electrons couple strongly to the environment, and so have very short relaxation and coherence times. It is therefore extremely difficult to achieve quantum coherence and stable entanglement of electron spins. Alternative concepts propose nuclear spins as the building blocks for quantum computing, because such spins are extremely well isolated from the environment and less prone to decoherence. However, weak coupling comes at a price: it remains challenging to address and manipulate individual nuclear spins. Here we show that the nuclear spin of an individual metal atom embedded in a single-molecule magnet can be read out electronically. The observed long lifetimes (tens of seconds) and relaxation characteristics of nuclear spin at the single-atom scale open the way to a completely new world of devices in which quantum logic may be implemented. 相似文献