首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni   总被引:1,自引:0,他引:1  
Schistosoma mansoni is the primary causative agent of schistosomiasis, which affects 200 million individuals in 74 countries. We generated 163,000 expressed-sequence tags (ESTs) from normalized cDNA libraries from six selected developmental stages of the parasite, resulting in 31,000 assembled sequences and 92% sampling of an estimated 14,000 gene complement. By analyzing automated Gene Ontology assignments, we provide a detailed view of important S. mansoni biological systems, including characterization of metazoa-specific and eukarya-conserved genes. Phylogenetic analysis suggests an early divergence from other metazoa. The data set provides insights into the molecular mechanisms of tissue organization, development, signaling, sexual dimorphism, host interactions and immune evasion and identifies novel proteins to be investigated as vaccine candidates and potential drug targets.  相似文献   

3.
Whole-genome sequence of Schistosoma haematobium   总被引:1,自引:0,他引:1  
Schistosomiasis is a neglected tropical disease caused by blood flukes (genus Schistosoma; schistosomes) and affecting 200 million people worldwide. No vaccines are available, and treatment relies on one drug, praziquantel. Schistosoma haematobium has come into the spotlight as a major cause of urogenital disease, as an agent linked to bladder cancer and as a predisposing factor for HIV/AIDS. The parasite is transmitted to humans from freshwater snails. Worms dwell in blood vessels and release eggs that become embedded in the bladder wall to elicit chronic immune-mediated disease and induce squamous cell carcinoma. Here we sequenced the 385-Mb genome of S. haematobium using Illumina-based technology at 74-fold coverage and compared it to sequences from related parasites. We included genome annotation based on function, gene ontology, networking and pathway mapping. This genome now provides an unprecedented resource for many fundamental research areas and shows great promise for the design of new disease interventions.  相似文献   

4.
Diagnosis of parasitic or fungal diseases is made best by seeing or culturing the causative organism, but some times this is not possible and indirect laboratory methods such as immunodiagnostic tests are required. Immunological tests can be used to aid in the diagnosis of infection in two main ways. They can detect specific immune response of the host to the causative agent. They detect antigen in serum, cerebrospinal fluid (CSF) or other biological fluids during the cause of on infection. Sensitive, specific immunodiagnostic tests for antibodies detection arc indispensable when the organism is sequestered in an inaccessible part of the body (cystic echinococcis, hepatic amoebiasis…) or when the detection of the responsable agent is difficult (trichinellasis…). They are also needed to give the exact stage of the infection (recent or old toxoplasmosis), to monitor the fluctuations in anti-body titer in treated patients, to evaluate the efficiency of the treatment (schistosomiasis).Great progress has been made in antigen detection test to diagnose an invasive infection in immunocompromised patients (candidiasis, cryptococcosis); to distinguish the pathogen parasite from the commensal parasite (Entamoeba histolytica = invasive parasite / Entamoeba dispar = commensal parasite); to differenciate between fungi colonisation and disease (candidiasis).Recent advances in biotechnology have started revolutionizing the diagnosis of parasite and fungal diseases. An ideal immunodiagnostic test would not only reveal individuals that are infected or have been exposed to infection, but would also differentiate between various clinical manifestations.  相似文献   

5.
One goal in sequencing the Plasmodium falciparum genome, the agent of the most lethal form of malaria, is to discover vaccine and drug targets. However, identifying those targets in a genome in which approximately 60% of genes have unknown functions is an enormous challenge. Because the majority of known malaria antigens and drug-resistant genes are highly polymorphic and under various selective pressures, genome-wide analysis for signatures of selection may lead to discovery of new vaccine and drug candidates. Here we surveyed 3,539 P. falciparum genes ( approximately 65% of the predicted genes) for polymorphisms and identified various highly polymorphic loci and genes, some of which encode new antigens that we confirmed using human immune sera. Our collections of genome-wide SNPs ( approximately 65% nonsynonymous) and polymorphic microsatellites and indels provide a high-resolution map (one marker per approximately 4 kb) for mapping parasite traits and studying parasite populations. In addition, we report new antigens, providing urgently needed vaccine candidates for disease control.  相似文献   

6.
P. cynomolgi, a malaria-causing parasite of Asian Old World monkeys, is the sister taxon of P. vivax, the most prevalent malaria-causing species in humans outside of Africa. Because P. cynomolgi shares many phenotypic, biological and genetic characteristics with P. vivax, we generated draft genome sequences for three P. cynomolgi strains and performed genomic analysis comparing them with the P. vivax genome, as well as with the genome of a third previously sequenced simian parasite, Plasmodium knowlesi. Here, we show that genomes of the monkey malaria clade can be characterized by copy-number variants (CNVs) in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites and CNVs in the P. cynomolgi genome, providing a map of genetic variation that can be used to map parasite traits and study parasite populations. The sequencing of the P. cynomolgi genome is a critical step in developing a model system for P. vivax research and in counteracting the neglect of P. vivax.  相似文献   

7.
8.
Opisthorchis viverrini-related cholangiocarcinoma (CCA), a fatal bile duct cancer, is a major public health concern in areas endemic for this parasite. We report here whole-exome sequencing of eight O. viverrini-related tumors and matched normal tissue. We identified and validated 206 somatic mutations in 187 genes using Sanger sequencing and selected 15 genes for mutation prevalence screening in an additional 46 individuals with CCA (cases). In addition to the known cancer-related genes TP53 (mutated in 44.4% of cases), KRAS (16.7%) and SMAD4 (16.7%), we identified somatic mutations in 10 newly implicated genes in 14.8-3.7% of cases. These included inactivating mutations in MLL3 (in 14.8% of cases), ROBO2 (9.3%), RNF43 (9.3%) and PEG3 (5.6%), and activating mutations in the GNAS oncogene (9.3%). These genes have functions that can be broadly grouped into three biological classes: (i) deactivation of histone modifiers, (ii) activation of G protein signaling and (iii) loss of genome stability. This study provides insight into the mutational landscape contributing to O. viverrini-related CCA.  相似文献   

9.
We sequenced and annotated the genomes of four P. vivax strains collected from disparate geographic locations, tripling the number of genome sequences available for this understudied parasite and providing the first genome-wide perspective of global variability in this species. We observe approximately twice as much SNP diversity among these isolates as we do among a comparable collection of isolates of P. falciparum, a malaria-causing parasite that results in higher mortality. This indicates a distinct history of global colonization and/or a more stable demographic history for P. vivax relative to P. falciparum, which is thought to have undergone a recent population bottleneck. The SNP diversity, as well as additional microsatellite and gene family variability, suggests a capacity for greater functional variation in the global population of P. vivax. These findings warrant a deeper survey of variation in P. vivax to equip disease interventions targeting the distinctive biology of this neglected but major pathogen.  相似文献   

10.
Legionella pneumophila, the causative agent of Legionnaires' disease, replicates as an intracellular parasite of amoebae and persists in the environment as a free-living microbe. Here we have analyzed the complete genome sequences of L. pneumophila Paris (3,503,610 bp, 3,077 genes), an endemic strain that is predominant in France, and Lens (3,345,687 bp, 2,932 genes), an epidemic strain responsible for a major outbreak of disease in France. The L. pneumophila genomes show marked plasticity, with three different plasmids and with about 13% of the sequence differing between the two strains. Only strain Paris contains a type V secretion system, and its Lvh type IV secretion system is encoded by a 36-kb region that is either carried on a multicopy plasmid or integrated into the chromosome. Genetic mobility may enhance the versatility of L. pneumophila. Numerous genes encode eukaryotic-like proteins or motifs that are predicted to modulate host cell functions to the pathogen's advantage. The genome thus reflects the history and lifestyle of L. pneumophila, a human pathogen of macrophages that coevolved with fresh-water amoebae.  相似文献   

11.
Genetic variation allows the malaria parasite Plasmodium falciparum to overcome chemotherapeutic agents, vaccines and vector control strategies and remain a leading cause of global morbidity and mortality. Here we describe an initial survey of genetic variation across the P. falciparum genome. We performed extensive sequencing of 16 geographically diverse parasites and identified 46,937 SNPs, demonstrating rich diversity among P. falciparum parasites (pi = 1.16 x 10(-3)) and strong correlation with gene function. We identified multiple regions with signatures of selective sweeps in drug-resistant parasites, including a previously unidentified 160-kb region with extremely low polymorphism in pyrimethamine-resistant parasites. We further characterized 54 worldwide isolates by genotyping SNPs across 20 genomic regions. These data begin to define population structure among African, Asian and American groups and illustrate the degree of linkage disequilibrium, which extends over relatively short distances in African parasites but over longer distances in Asian parasites. We provide an initial map of genetic diversity in P. falciparum and demonstrate its potential utility in identifying genes subject to recent natural selection and in understanding the population genetics of this parasite.  相似文献   

12.
Protozoan parasites present a dispersal phase allowing spreading in the environment. Transmissive stages can be found in water, soil and food, where they can survive during long periods of time. Such parasites represent a continous threat for human and animal health. Main protozoans parasites are Cryptosporidium spp., Giardia spp., Cyclospora sp., Toxoplasma sp. as well as amœba Entamœba spp., Acanthamœba spp. and Naegleria sp. All these pathogens can be responsable for major waterborne disease outbreaks.The density of parasite contamination in aquatic environment particularly surface water and waste water begins to focus attention. Detection methods, however, have to be improved in order to be able to produce data such as viability, infectiosity and typing of the parasite stages. That are essentiel to determine the significance of the presence of these waterborne pathogens for public health.  相似文献   

13.
Demodex is a small worm-like mite, very frequent in sebaceous glands, eyeclash follicles, on the nose and the forhead. The symptoms due to this parasite are discussed (blepharitis, rosacea). The diagnosis is based on the Demodex found in cutaneous squama, in eyelashes, or sometimes in skin biopsy. Treatment consists essentially of a topical application of antiparasitic agents.  相似文献   

14.
Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.  相似文献   

15.
The minimal gene set essential for life has long been sought. We report the 860-kb genome of the obligate intracellular plant pathogen phytoplasma (Candidatus Phytoplasma asteris, OY strain). The phytoplasma genome encodes even fewer metabolic functions than do mycoplasma genomes. It lacks the pentose phosphate cycle and, more unexpectedly, ATP-synthase subunits, which are thought to be essential for life. This may be the result of reductive evolution as a consequence of life as an intracellular parasite in a nutrient-rich environment.  相似文献   

16.
We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1(P29S)) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1(P29S) showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.  相似文献   

17.
In medical parasitology PCR-based methods are the most frequently molecular used tools. The best results have been obtained for diagnosis of congenital toxoplasmosis by parasite DNA detection on amniotic fluid. This technique is now currently employed but a recent european study showed the need of an external quality assurance sheme because of the lack of homogeneity in results obtained by this blinded control (aliquots made with amniotic fluid spiked with Toxoplasma). For others protozoa the interest and limits of the use of PCR as diagnosis tool are in question..  相似文献   

18.
The Huntington's disease (HD) gene has been localized by recombination events to a region covering 2.2 megabases (Mb) DNA within chromosome 4p16.3. We have screened three yeast artificial chromosome (YAC) libraries in order to isolate and characterize 44 YAC clones mapping to this region. Approximately 50% of the YACs were chimaeric. Unstable YACs were identified across the whole region, but were particularly prevalent around the D4S183 and D4S43 loci. The YACs have been assembled into a contig extending from D4S126 to D4S98 covering roughly 2 Mb DNA, except for a gap of about 250 kilobases (kb). The establishment of a YAC contig which spans the region most likely to contain the HD mutation is an essential step in the isolation of the HD gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号