首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes   总被引:5,自引:0,他引:5  
Gu TP  Guo F  Yang H  Wu HP  Xu GF  Liu W  Xie ZG  Shi L  He X  Jin SG  Iqbal K  Shi YG  Deng Z  Szabó PE  Pfeifer GP  Li J  Xu GL 《Nature》2011,477(7366):606-610
Sperm and eggs carry distinctive epigenetic modifications that are adjusted by reprogramming after fertilization. The paternal genome in a zygote undergoes active DNA demethylation before the first mitosis. The biological significance and mechanisms of this paternal epigenome remodelling have remained unclear. Here we report that, within mouse zygotes, oxidation of 5-methylcytosine (5mC) occurs on the paternal genome, changing 5mC into 5-hydroxymethylcytosine (5hmC). Furthermore, we demonstrate that the dioxygenase Tet3 (ref. 5) is enriched specifically in the male pronucleus. In Tet3-deficient zygotes from conditional knockout mice, paternal-genome conversion of 5mC into 5hmC fails to occur and the level of 5mC remains constant. Deficiency of Tet3 also impedes the demethylation process of the paternal Oct4 and Nanog genes and delays the subsequent activation of a paternally derived Oct4 transgene in early embryos. Female mice depleted of Tet3 in the germ line show severely reduced fecundity and their heterozygous mutant offspring lacking maternal Tet3 suffer an increased incidence of developmental failure. Oocytes lacking Tet3 also seem to have a reduced ability to reprogram the injected nuclei from somatic cells. Therefore, Tet3-mediated DNA hydroxylation is involved in epigenetic reprogramming of the zygotic paternal DNA following natural fertilization and may also contribute to somatic cell nuclear reprogramming during animal cloning.  相似文献   

2.
3.
4.
5.
TET2 is a close relative of TET1, an enzyme that converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. The gene encoding TET2 resides at chromosome 4q24, in a region showing recurrent microdeletions and copy-neutral loss of heterozygosity (CN-LOH) in patients with diverse myeloid malignancies. Somatic TET2 mutations are frequently observed in myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes including chronic myelomonocytic leukaemia (CMML), acute myeloid leukaemias (AML) and secondary AML (sAML). We show here that TET2 mutations associated with myeloid malignancies compromise catalytic activity. Bone marrow samples from patients with TET2 mutations displayed uniformly low levels of 5hmC in genomic DNA compared to bone marrow samples from healthy controls. Moreover, small hairpin RNA (shRNA)-mediated depletion of Tet2 in mouse haematopoietic precursors skewed their differentiation towards monocyte/macrophage lineages in culture. There was no significant difference in DNA methylation between bone marrow samples from patients with high 5hmC versus healthy controls, but samples from patients with low 5hmC showed hypomethylation relative to controls at the majority of differentially methylated CpG sites. Our results demonstrate that Tet2 is important for normal myelopoiesis, and suggest that disruption of TET2 enzymatic activity favours myeloid tumorigenesis. Measurement of 5hmC levels in myeloid malignancies may prove valuable as a diagnostic and prognostic tool, to tailor therapies and assess responses to anticancer drugs.  相似文献   

6.
7.
Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.  相似文献   

8.
9.
10.
11.
5-Hydroxymethylcytosine (5hmC) was present in T-even phage and mammalian DNA. 5hmC in phage is formed by hydroxymethylation of the cytosine base in deoxycytidylate (dCMP) by deoxycytidylate hydroxymethylase (CH), which uses the solvent water as the hydroxyl group donor. By contrast, 5hmC is formed in mammal zygotes by the oxidation of 5-methylcytosine (5mC). 5hmC was also present in a nucleoside antibiotic mildiomycin and its formation is governed by a cytidylate hydroxymethylase MilA. However, the catalytic mechanism remains unknown. In the present study, we purified His-tagged MilA and fed its in vitro reaction with H218O. The LC-MS analysis of the product revealed that 18O was incorporated into the hydroxymethylated CMP (HmCMP), and the secondary MS result of 18O-labeled HmCMP indicated that 18O was incorporated into the cytosine of HmCMP. The results demonstrate that MilA uses solvent water as the hydroxyl group donor like CH. Moreover, Thr102 of MilA was predicted as potential critical amino acid anchoring one molecule of water for hydroxylation. Finally, organizational context comparison in microbial genomes reveals that six homologous ORFs originally annotated as putative thymidylate synthase (TS) are more likely to be CMP hydroxymethylase.  相似文献   

12.
13.
Wu H  D'Alessio AC  Ito S  Xia K  Wang Z  Cui K  Zhao K  Sun YE  Zhang Y 《Nature》2011,473(7347):389-393
  相似文献   

14.
15.
16.
17.
18.
19.
20.
Minutes after DNA damage, the variant histone H2AX is phosphorylated by protein kinases of the phosphoinositide kinase family, including ATM, ATR or DNA-PK. Phosphorylated (gamma)-H2AX-which recruits molecules that sense or signal the presence of DNA breaks, activating the response that leads to repair-is the earliest known marker of chromosomal DNA breakage. Here we identify a dynamic change in chromatin that promotes H2AX phosphorylation in mammalian cells. DNA breaks swiftly mobilize heterochromatin protein 1 (HP1)-beta (also called CBX1), a chromatin factor bound to histone H3 methylated on lysine 9 (H3K9me). Local changes in histone-tail modifications are not apparent. Instead, phosphorylation of HP1-beta on amino acid Thr 51 accompanies mobilization, releasing HP1-beta from chromatin by disrupting hydrogen bonds that fold its chromodomain around H3K9me. Inhibition of casein kinase 2 (CK2), an enzyme implicated in DNA damage sensing and repair, suppresses Thr 51 phosphorylation and HP1-beta mobilization in living cells. CK2 inhibition, or a constitutively chromatin-bound HP1-beta mutant, diminishes H2AX phosphorylation. Our findings reveal an unrecognized signalling cascade that helps to initiate the DNA damage response, altering chromatin by modifying a histone-code mediator protein, HP1, but not the code itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号