首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells   总被引:1,自引:0,他引:1  
Kawamura Y  Saito K  Kin T  Ono Y  Asai K  Sunohara T  Okada TN  Siomi MC  Siomi H 《Nature》2008,453(7196):793-797
  相似文献   

2.
Parker JS  Roe SM  Barford D 《Nature》2005,434(7033):663-666
RNA interference and related RNA silencing phenomena use short antisense guide RNA molecules to repress the expression of target genes. Argonaute proteins, containing amino-terminal PAZ (for PIWI/Argonaute/Zwille) domains and carboxy-terminal PIWI domains, are core components of these mechanisms. Here we show the crystal structure of a Piwi protein from Archaeoglobus fulgidus (AfPiwi) in complex with a small interfering RNA (siRNA)-like duplex, which mimics the 5' end of a guide RNA strand bound to an overhanging target messenger RNA. The structure contains a highly conserved metal-binding site that anchors the 5' nucleotide of the guide RNA. The first base pair of the duplex is unwound, separating the 5' nucleotide of the guide from the complementary nucleotide on the target strand, which exits with the 3' overhang through a short channel. The remaining base-paired nucleotides assume an A-form helix, accommodated within a channel in the PIWI domain, which can be extended to place the scissile phosphate of the target strand adjacent to the putative slicer catalytic site. This study provides insights into mechanisms of target mRNA recognition and cleavage by an Argonaute-siRNA guide complex.  相似文献   

3.
Ma JB  Yuan YR  Meister G  Pei Y  Tuschl T  Patel DJ 《Nature》2005,434(7033):666-670
RNA interference (RNAi) is a conserved sequence-specific gene regulatory mechanism mediated by the RNA-induced silencing complex (RISC), which is composed of a single-stranded guide RNA and an Argonaute protein. The PIWI domain, a highly conserved motif within Argonaute, has been shown to adopt an RNase H fold critical for the endonuclease cleavage activity of RISC. Here we report the crystal structure of Archaeoglobus fulgidus Piwi protein bound to double-stranded RNA, thereby identifying the binding pocket for guide-strand 5'-end recognition and providing insight into guide-strand-mediated messenger RNA target recognition. The phosphorylated 5' end of the guide RNA is anchored within a highly conserved basic pocket, supplemented by the carboxy-terminal carboxylate and a bound divalent cation. The first nucleotide from the 5' end of the guide RNA is unpaired and stacks over a conserved tyrosine residue, whereas successive nucleotides form a four-base-pair RNA duplex. Mutation of the corresponding amino acids that contact the 5' phosphate in human Ago2 resulted in attenuated mRNA cleavage activity. Our structure of the Piwi-RNA complex, and that determined elsewhere, provide direct support for the 5' region of the guide RNA serving as a nucleation site for pairing with target mRNA and for a fixed distance separating the RISC-mediated mRNA cleavage site from the anchored 5' end of the guide RNA.  相似文献   

4.
Ma JB  Ye K  Patel DJ 《Nature》2004,429(6989):318-322
Short RNAs mediate gene silencing, a process associated with virus resistance, developmental control and heterochromatin formation in eukaryotes. RNA silencing is initiated through Dicer-mediated processing of double-stranded RNA into small interfering RNA (siRNA). The siRNA guide strand associates with the Argonaute protein in silencing effector complexes, recognizes complementary sequences and targets them for silencing. The PAZ domain is an RNA-binding module found in Argonaute and some Dicer proteins and its structure has been determined in the free state. Here, we report the 2.6 A crystal structure of the PAZ domain from human Argonaute eIF2c1 bound to both ends of a 9-mer siRNA-like duplex. In a sequence-independent manner, PAZ anchors the 2-nucleotide 3' overhang of the siRNA-like duplex within a highly conserved binding pocket, and secures the duplex by binding the 7-nucleotide phosphodiester backbone of the overhang-containing strand and capping the 5'-terminal residue of the complementary strand. On the basis of the structure and on binding assays, we propose that PAZ might serve as an siRNA-end-binding module for siRNA transfer in the RNA silencing pathway, and as an anchoring site for the 3' end of guide RNA within silencing effector complexes.  相似文献   

5.
Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain   总被引:3,自引:0,他引:3  
Lingel A  Simon B  Izaurralde E  Sattler M 《Nature》2003,426(6965):465-469
RNA interference is a conserved mechanism that regulates gene expression in response to the presence of double-stranded (ds)RNAs. The RNase III-like enzyme Dicer first cleaves dsRNA into 21-23-nucleotide small interfering RNAs (siRNAs). In the effector step, the multimeric RNA-induced silencing complex (RISC) identifies messenger RNAs homologous to the siRNAs and promotes their degradation. The Argonaute 2 protein (Ago2) is a critical component of RISC. Both Argonaute and Dicer family proteins contain a common PAZ domain whose function is unknown. Here we present the three-dimensional nuclear magnetic resonance structure of the Drosophila melanogaster Ago2 PAZ domain. This domain adopts a nucleic-acid-binding fold that is stabilized by conserved hydrophobic residues. The nucleic-acid-binding patch is located in a cleft between the surface of a central beta-barrel and a conserved module comprising strands beta3, beta4 and helix alpha3. Because critical structural residues and the binding surface are conserved, we suggest that PAZ domains in all members of the Argonaute and Dicer families adopt a similar fold with nucleic-acid binding function, and that this plays an important part in gene silencing.  相似文献   

6.
Structure and conserved RNA binding of the PAZ domain   总被引:1,自引:0,他引:1  
Yan KS  Yan S  Farooq A  Han A  Zeng L  Zhou MM 《Nature》2003,426(6965):468-474
The discovery of RNA-mediated gene-silencing pathways, including RNA interference, highlights a fundamental role of short RNAs in eukaryotic gene regulation and antiviral defence. Members of the Dicer and Argonaute protein families are essential components of these RNA-silencing pathways. Notably, these two families possess an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose biochemical function is unknown. Here we report the nuclear magnetic resonance solution structure of the PAZ domain from Drosophila melanogaster Argonaute 1 (Ago1). The structure consists of a left-handed, six-stranded beta-barrel capped at one end by two alpha-helices and wrapped on one side by a distinctive appendage, which comprises a long beta-hairpin and a short alpha-helix. Using structural and biochemical analyses, we demonstrate that the PAZ domain binds a 5-nucleotide RNA with 1:1 stoichiometry. We map the RNA-binding surface to the open face of the beta-barrel, which contains amino acids conserved within the PAZ domain family, and we define the 5'-to-3' orientation of single-stranded RNA bound within that site. Furthermore, we show that PAZ domains from different human Argonaute proteins also bind RNA, establishing a conserved function for this domain.  相似文献   

7.
A H Igel  M Ares 《Nature》1988,334(6181):450-453
U2 small nuclear RNA is a highly conserved component of the eukaryotic cell nucleus involved in splicing messenger RNA precursors. In the yeast Saccharomyces cerevisiae, U2 RNA interacts with the intron by RNA-RNA pairing between the conserved branchpoint sequence UACUAAC and conserved nucleotides near the 5' end of U2 (ref. 4). Metazoan U2 RNA is less than 200 nucleotides in length, but yeast U2 RNA is 1,175 nucleotides long. The 5' 110 nucleotides of yeast U2 are homologous to the 5' 100 nucleotides of metazoan U2 (ref. 6), and the very 3' end of yeast U2 bears a weak structural resemblance to features near the 3' end of metazoan U2. Internal sequences of yeast U2 share primary sequence homology with metazoan U4, U5 and U6 small nuclear RNA (ref. 6), and have regions of complementarity with yeast U1 (ref. 7). We have investigated the importance of the internal U2 sequences by their deletion. Yeast cells carrying a U2 allele lacking 958 nucleotides of internal U2 sequence produce a U2 small nuclear RNA similar in size to that found in other organisms. Cells carrying only the U2 deletion grow normally, have normal levels of spliced mRNA and do not accumulate unspliced precursor mRNA. We conclude that the internal sequences of yeast U2 carry no essential function. The extra RNA may have a non-essential function in efficient ribonucleoprotein assembly or RNA stability. Variation in amount of RNA in homologous structural RNAs has precedence in ribosomal RNA and RNaseP.  相似文献   

8.
9.
10.
Role for a bidentate ribonuclease in the initiation step of RNA interference   总被引:344,自引:0,他引:344  
Bernstein E  Caudy AA  Hammond SM  Hannon GJ 《Nature》2001,409(6818):363-366
  相似文献   

11.
Autoregulation of microRNA biogenesis by let-7 and Argonaute   总被引:1,自引:0,他引:1  
Zisoulis DG  Kai ZS  Chang RK  Pasquinelli AE 《Nature》2012,486(7404):541-544
  相似文献   

12.
A germline-specific class of small RNAs binds mammalian Piwi proteins   总被引:6,自引:0,他引:6  
Girard A  Sachidanandam R  Hannon GJ  Carmell MA 《Nature》2006,442(7099):199-202
Small RNAs associate with Argonaute proteins and serve as sequence-specific guides to regulate messenger RNA stability, protein synthesis, chromatin organization and genome structure. In animals, Argonaute proteins segregate into two subfamilies. The Argonaute subfamily acts in RNA interference and in microRNA-mediated gene regulation using 21-22-nucleotide RNAs as guides. The Piwi subfamily is involved in germline-specific events such as germline stem cell maintenance and meiosis. However, neither the biochemical function of Piwi proteins nor the nature of their small RNA guides is known. Here we show that MIWI, a murine Piwi protein, binds a previously uncharacterized class of approximately 29-30-nucleotide RNAs that are highly abundant in testes. We have therefore named these Piwi-interacting RNAs (piRNAs). piRNAs show distinctive localization patterns in the genome, being predominantly grouped into 20-90-kilobase clusters, wherein long stretches of small RNAs are derived from only one strand. Similar piRNAs are also found in human and rat, with major clusters occurring in syntenic locations. Although their function must still be resolved, the abundance of piRNAs in germline cells and the male sterility of Miwi mutants suggest a role in gametogenesis.  相似文献   

13.
Numata T  Ikeuchi Y  Fukai S  Suzuki T  Nureki O 《Nature》2006,442(7101):419-424
Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon-anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase-tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an alpha-helix overhanging the active site is restructured into an idiosyncratic beta-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.  相似文献   

14.
15.
B Datta  A M Weiner 《Nature》1991,352(6338):821-824
Removal of introns from eukaryotic nuclear messenger RNA precursors is catalysed by a large ribonucleoprotein complex called the spliceosome, which consists of four small nuclear ribonucleoprotein particles (U1, U2, U5, and U4/U6 snRNPs) and auxiliary protein factors. We have begun a genetic analysis of mammalian U2 snRNA by making second-site mutations in a suppressor U2 snRNA. Here we find that several mutations in the 5' end of U2 (nucleotides 3-8) are deleterious and that one of these can be rescued by compensatory base changes in the 3' end of U6 (nucleotides 92-95). The results demonstrate genetically that the base-pairing interaction between U2 (nucleotides 3-11) and U6 snRNA (nucleotides 87-95), originally proposed on the basis of psoralen photocrosslinking experiments, can influence the efficiency of mRNA splicing in mammals. The U2/U6 interaction in yeast, however, is fairly tolerant to mutation (D.J. Field and J.D. Friesen, personal communication), emphasizing the potential for facultative RNA interactions within the spliceosome.  相似文献   

16.
Krasilnikov AS  Yang X  Pan T  Mondragón A 《Nature》2003,421(6924):760-764
RNase P is the only endonuclease responsible for processing the 5' end of transfer RNA by cleaving a precursor and leading to tRNA maturation. It contains an RNA component and a protein component and has been identified in all organisms. It was one of the first catalytic RNAs identified and the first that acts as a multiple-turnover enzyme in vivo. RNase P and the ribosome are so far the only two ribozymes known to be conserved in all kingdoms of life. The RNA component of bacterial RNase P can catalyse pre-tRNA cleavage in the absence of the RNase P protein in vitro and consists of two domains: a specificity domain and a catalytic domain. Here we report a 3.15-A resolution crystal structure of the 154-nucleotide specificity domain of Bacillus subtilis RNase P. The structure reveals the architecture of this domain, the interactions that maintain the overall fold of the molecule, a large non-helical but well-structured module that is conserved in all RNase P RNA, and the regions that are involved in interactions with the substrate.  相似文献   

17.
D L Robertson  G F Joyce 《Nature》1990,344(6265):467-468
The discovery of RNA enzymes has, for the first time, provided a single molecule that has both genetic and catalytic properties. We have devised techniques for the mutation, selection and amplification of catalytic RNA, all of which can be performed rapidly in vitro. Here we describe how these techniques can be integrated and performed repeatedly within a single reaction vessel. This allows evolution experiments to be carried out in response to artificially imposed selection constraints. We worked with the Tetrahymena ribozyme, a self-splicing group I intron derived from the large ribosomal RNA precursor of Tetrahymena thermophila that catalyses sequence-specific phosphoester transfer reactions involving RNA substrates. It consists of 413 nucleotides, and assumes a well-defined secondary and tertiary structure responsible for its catalytic activity. We selected for variant forms of the enzyme that could best react with a DNA substrate. This led to the recovery of a mutant form of the enzyme that cleaves DNA more efficiently than the wild-type enzyme. The selected molecule represents the discovery of the first RNA enzyme known to cleave single-stranded DNA specifically.  相似文献   

18.
Antibiotic inhibition of group I ribozyme function   总被引:21,自引:0,他引:21  
U von Ahsen  J Davies  R Schroeder 《Nature》1991,353(6342):368-370
The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.  相似文献   

19.
A M Pyle  T R Cech 《Nature》1991,350(6319):628-631
Shortened forms of the group I intron from Tetrahymena catalyse sequence-specific cleavage of exogenous oligonucleotide substrates. The association between RNA enzyme (ribozyme) and substrate is mediated by pairing between an internal guide sequence on the ribozyme and a complementary sequence on the substrate. RNA substrates and cleavage products associate with a binding energy greater than that of base-pairing by approximately 4 kcal-mol-1 (at 42 degrees C), whereas DNA associates with an energy around that expected for base-pairing. It has been proposed that the difference in binding affinity is due to specific 2'-OH groups on an RNA substrate forming stabilizing tertiary interactions with the core of the ribozyme, or that the RNA.RNA helix formed upon association of an RNA substrate and the ribozyme might be more stable than an RNA.DNA helix of the same sequence. To differentiate between these two models, chimaeric oligonucleotides containing deoxynucleotide residues at successive positions along the chain were synthesized, and their equilibrium binding constants for association with the ribozyme were measured directly by a new gel electrophoresis technique. We report here that most of the extra binding energy can be accounted for by discrete RNA-ribozyme interactions, the 2'-OH group on the sugar residue three nucleotides from the cleavage site contributing the most interaction energy. Thus, in addition to the well documented binding of RNA to RNA by base-pairing, 2'-OH groups within a duplex can also mediate association between RNA molecules.  相似文献   

20.
RNA degradation is a determining factor in the control of gene expression. The maturation, turnover and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a major exoribonuclease that intervenes in all of these fundamental processes; it can act independently or as a component of the exosome, an essential RNA-degrading multiprotein complex. RNase II-like enzymes are found in all three kingdoms of life, but there are no structural data for any of the proteins of this family. Here we report the X-ray crystallographic structures of both the ligand-free (at 2.44 A resolution) and RNA-bound (at 2.74 A resolution) forms of Escherichia coli RNase II. In contrast to sequence predictions, the structures show that RNase II is organized into four domains: two cold-shock domains, one RNB catalytic domain, which has an unprecedented alphabeta-fold, and one S1 domain. The enzyme establishes contacts with RNA in two distinct regions, the 'anchor' and the 'catalytic' regions, which act synergistically to provide catalysis. The active site is buried within the RNB catalytic domain, in a pocket formed by four conserved sequence motifs. The structure shows that the catalytic pocket is only accessible to single-stranded RNA, and explains the specificity for RNA versus DNA cleavage. It also explains the dynamic mechanism of RNA degradation by providing the structural basis for RNA translocation and enzyme processivity. We propose a reaction mechanism for exonucleolytic RNA degradation involving key conserved residues. Our three-dimensional model corroborates all existing biochemical data for RNase II, and elucidates the general basis for RNA degradation. Moreover, it reveals important structural features that can be extrapolated to other members of this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号