首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了实现废物循环利用及节能减排,以磷化工副产物磷铁废渣、磷酸、过氧化氢为原料合成了羟基磷酸铁进而制备了磷酸铁锂,并采用多种测试方法对产物进行了分析.实验结果表明,当磷酸/过氧化氢配比为1.2/1时合成的羟基磷酸铁的结晶度最好,由其制备的磷酸铁锂首次放电容量可达151.6 m Ah/g,库仑效率达93%.同时,实验过程实现了零污染、低成本,为磷酸铁锂正极材料制备提供了新方向.  相似文献   

2.
LiFePO4是最近几年被广泛报道的一种新型锂离子电池正极材料.它具有较高的能量密度、优良的循环性能,资源丰富,安全性能好、对环境友好等许多优点,而且理论容量高达170mAh/g.但也存在电子导电率和锂离子扩散速度低等缺点,需要进一步的改进.本文概述了LiFePO4的结构、充放电机理、合成方法、以及其优缺点、如何改性等方面,介绍了这种新型的锂离子电池正极材料的目前研究概况.  相似文献   

3.
掺杂金属离子对磷酸铁锂结构及性能的影响   总被引:1,自引:0,他引:1  
为改善磷酸铁锂的电化学性能,采用掺杂金属离子的方法,通过高温固相反应合成了一系列Li1-xMxFePO4(M=Mg2+、Al3+、Cr3+)掺杂复合试样,利用XRD、恒电流充放电等方法研究了金属阳离子的种类和用量对材料的晶体结构以及电化学性能的影响.结果表明,煅烧温度、掺杂元素的种类和用量对复合试样电化学性能均有较大影响,在煅烧温度为700 ℃下所得Li0.98Al0.02FePO4复合试样的电化学性能最佳.  相似文献   

4.
面对世界范围内日趋严重的能源危机、气候、环保等问题,能源低碳转型已经成为大势所趋。锂离子电池是“双碳”愿景下电化学储能领域的重要方向,在新能源汽车和智能电子设备领域都发挥了不可忽视的作用。但科技的发展和日益增长的社会生活生产需求对现有锂离子电池的能量密度提出了更高的要求。富锂正极材料具有成本低、工作电压高、比容量高(>250 mA·h·g-1)等优点,在下一代锂离子电池正极中极具潜力,但初始库仑效率(ICE)低、容量衰减和电压衰减等问题仍制约着富锂正极材料的商业化进程。本文综述了近年来国内外针对富锂正极材料结构、反应机理和改性方法等方面的研究进展,总结富锂正极材料的研究热点与挑战,并对未来发展方向提出了展望。  相似文献   

5.
磷酸铁锂(LiFePO4)为橄榄石结构,是一种常见的锂离子电池正极材料,其理论比容量为170 mAh/g,工作电压为3.2 V,电子导电率为1×10-10~1×10-9 S/cm.本文主要以锂离子电池磷酸铁锂正极材料的相关专利申请作为研究对象,对锂离子电池磷酸铁锂正极材料的掺杂技术和包覆技术的专利文献进行分析.通过分析...  相似文献   

6.
锂离子电池正极材料锂镍钴氧化物的制备   总被引:2,自引:0,他引:2  
以Ni0 .8Co0 .2 (OH) 2 和LiOH·H2 O为原料 ,采用固相烧结法合成了锂离子电池正极材料LiNi0 .8Co0 .2 O2 ,并用正交试验法对反应温度和反应时间等因素进行了优化 .结果表明 ,通过严格控制各影响因素可以制得结构和性能优良的锂镍钴氧化物正极材料 ,其首次放电比容量大于 1 6 0mA·h/ g ,松装密度大于 2 .0 g/cm3.  相似文献   

7.
介绍了一种将石墨烯(Graphite)引入锂离子电池正极材料磷酸铁锂(LiFePO_4)中获得LiFePO_4/graphite复合材料的制备方法。首先以碳酸锂、草酸亚铁、磷酸氢二铵和葡萄糖为原材料,采用高温固相法合成了碳包覆的LiFePO_4前躯体,再通过固相粉体混合的工艺加入不同百分比的石墨烯,制备出磷酸铁/石墨烯锂离子电池正极复合材料;对所制备的复合材料组装成纽扣电池进行性能测试;结果表明:复合材料的电化学性能显著提高,在0.1C放电倍率条件下,LiFePO_4+1wt%graphite复合材料的首次放电容量从LiFePO_4基体材料的131.75mAh/g提高到146.51mAh/g,LiFePO_4+1wt%graphite复合材料的充电性能和放电性能分别提高了5.8%和4.8%。  相似文献   

8.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

9.
采用体相掺杂法对LiFePO4进行改性,采用Mg对LiFePO4进行掺杂,研究Mg的掺杂量对LiFePO4材料电化学性能的影响.研究结果表明,经掺杂改性后的LiFe1-xMgxPO4(x=0.01,0.05,0.10,0.15)材料的充放电容量和循环性能均有所提高,其中,样品LiFe0.85Mg0.15PO4的性能最佳,其首次放电容量为125.6 mA·h/g,循环6次后容量仍达123.0 mA·h/g;Mg部分取代LiFePO4材料中的Fe后所得材料的电子电导率提高了1×106倍,从而提高了材料的电化学性能.  相似文献   

10.
采用18650电池结构研究了A、B两种商业化磷酸铁锂材料循环性能,在对比研究中发现A材料在常温循环初始阶段的特殊性,针对这种情况,首先对它的物理化学性质进行了分析,在此基础上提出了一种机理假设,即该材料的这种循环特性是由电解液在该材料中的渗透特性决定的. 基于此,本文从材料的碳包覆、循环过程的阻抗谱图、极片的浸润性实验以及电池的老化时间等4个方面来论证上述假设. 研究分析结果表明: 电解液在A材料内部难以完全渗透,可能是导致由该材料制作电池在循环初始阶段容量先逐渐上升,然后才正常衰减现象的原因.  相似文献   

11.
FePO4的制备及其在锂电池中的应用   总被引:1,自引:1,他引:1  
采用不同的方法制备磷酸高铁 ,对其在锂金属二次电池中的充放电比容量进行测定 ,研究不同煅烧温度对其性能的影响 .通过机械研磨的方法 ,获得高比容量的 Fe PO4样品 .在电流密度为 0 .13m A· cm-2 时 ,首次放电比容量达 132 .0 m A· h· g-1.通过实验证明 ,结晶状磷酸高铁也可以获得具有与无定形磷酸高铁相近的充放电容量 .该方法提供一种原料价格低廉、制造简单和充放电容量高的正极活性材料 ,可应用于金属锂电池  相似文献   

12.
介绍了水系锂离子电池的结构、原理、特点、发展现状,以及负极材料磷酸钛锂的特点,综述了磷酸钛锂性能提升改性方法,包括特殊结构改性、晶格掺杂、引入高效导电剂等磷酸钛锂的研究进展阐释了和发展前景.  相似文献   

13.
磷酸铁锂电池充电后静置的电压预测方法   总被引:1,自引:1,他引:1  
混合动力电动汽车在行驶过程中的动态充电后静置开路电压不稳定。特别是再生制动充电时开路电压的变化,而导致常用的开路电压法存在SOC估计误差大和混合动力电动汽车动力控制策略难以实施。以磷酸铁锂电池为对象,依据电化学理论分析了其充电后静置过程中正负极表面锂离子扩散对开路电压的影响机理以及开路电压随时间的变化关系。再通过充电后静置实验和参数辨识方法,建立了充电后磷酸铁锂电池静置开路电压预测模型。以此对其充电后静置的开路电压进行了预测实验。结果表明,在实验工况下,该模型的最大预测误差为0.017V。  相似文献   

14.
正极材料磷酸亚铁锂的共沉淀合成和Mn2+掺杂的研究   总被引:1,自引:0,他引:1  
研究了以氢氧化锂、硫酸亚铁铵和磷酸氢二铵为原料,利用液相共沉淀法制备LiFePO4正极材料和掺杂Mn2 的LiFePO4改性正极材料,并对其进行XRD、SEM分析和电化学性能测试。分析得出,利用液相共沉淀法掺杂Mn2 的正极材料的初始放电比容量为132.9 mAhg-1,且循环10次后,容量仍有124.5 mAhg-1,容量衰减率仅为6.32%。表明少量Mn2 的掺杂没有改变LiFe-PO4的晶体结构,且使材料的电化学性能有所提高。  相似文献   

15.
0Introduction SincePadhietal[1]foundlithiumironphosphate(LiFe PO4)couldbeusedascathodematerialforthelithiumionbatteries,manyresearchgroupshavebeendevotedtoim provingtheperformanceofthismaterial[26].Theythought thatLiFePO4isoneofthemostpromisingcathodemate…  相似文献   

16.
电动汽车已成为未来汽车的主要发展方向之一,动力电池是电动汽车的核心部件,动力电池技术则是电动汽车发展的核心技术.总结了传统锂离子电池正极材料的优缺点,及对它们的改性研究,着重介绍了LiFe-SiO4、LiVPO4F、Li3V2(PO4)3和纳米正极材料的研究现状和性能改进方法,并对其发展方向进行了展望.  相似文献   

17.
1 Results For electrode materials in lithium batteries,a high surface area can provide higher electrode/electrolyte contact areas,thus eventually causing the shorter diffusion paths with the particles,and provides more facile intercalation for Li ions[1-4].In addition,reduced strain of intercalation and contributions from charge storage at the surface may also contribute to Li capacity,compared with bulk counterparts.In this regard,I am going to talk about the preparation and electrochemical properties o...  相似文献   

18.
以乙酸镁为掺杂元素、蔗糖为碳源,采用固相反应法制备镁掺杂磷酸铁锂包覆碳复合材料LiFe1-xMgxPO4/C(x=0.01,0.02,0.03,0.04).利用X射线衍射(XRD)分析其结构,扫描电镜(SEM)观察其形貌,恒电流法测定其电化学性能.研究结果表明镁离子掺杂没有影响材料的结构,而是提高了其放电容量和循环性能.在这些样品中,LiFe0.98Mg0.02位PO4/C的容量最高,首次放电达到140.0 mAh/g;并且在80次循环后容量没有衰减反而增加到148.6 mAh/g左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号