共查询到19条相似文献,搜索用时 78 毫秒
1.
主要介绍利用多层神经网络进行非线性系统辨识的几种模型以及相应的算法,并分析和比较它们的辨识性能.为高度不确定性动态系统的综合设计提出了一种分析方法。 相似文献
2.
基于FLANN的非线性动态系统辨识 总被引:1,自引:0,他引:1
采用一种基于FLANN-PSO的SISO非线性动态系统辨识方法,构造了基于FLANN的辨识模型,然后运用PSO优化算法实现模型权值辨识.通过对4种典型非线性动态系统进行了辨识仿真,结果表明该方法具有良好的性能和高辨识精度,它将更适合于工程实际需要. 相似文献
3.
非线性BP算法在系统辨识中的应用 总被引:1,自引:0,他引:1
研究利用非线性BP算法训练多层前馈神经网络,对非线性动力系统进行建模,给出了基于非线性BP算法的系统辨识计算步骤,通过仿真计算表明,基于非线性BP算法的系统辨识至少可以获得与常规BP算法同样的效果,因为不需要计算神经元激活函数的导函数,文中的结果可以更小的代价实现基于神经网络的控制器。 相似文献
4.
基于神经网络实现了非线性系统的分析,给出了计算实例,实验结果表明了方法的有效性。 相似文献
5.
遗传程序设计(GP)是一种自适应的与问题无关的进化算法,它克服了遗传算法的容易陷入局部极值的缺陷。本文讨论使用遗传程序设计对非线性系统进行参数辨识的算法,实现及应用,实验证明:该方法具有收敛速度和精度的明显优势。 相似文献
6.
神经网络在非线性系统参数辨识中应用 总被引:1,自引:2,他引:1
丁晓贵 《安徽工程科技学院学报:自然科学版》2003,18(4):62-64
要对非线性系统进行控制,必须掌握其模型.介绍一种辨识非线性系统模型的方法,该方法利用多层神经网络可以逼近任何非线性函数这一理论,提出针对非线性系统构造神经网络模型,并给出一种实用的BP算法.最后通过仿真实验,证明该方法切实可行. 相似文献
7.
基于小波神经网络的非线性动态系统辨识 总被引:1,自引:1,他引:1
在小波神经网络的基础上提出了一种辨识非线性动态系统的方法.该方法有效地将系统辨识所需要的结构形式与多层神经网络及小波基函数所构成的分辨率信息处理过程相结合,建立了从数据到符号的自适应机制.仿真结果表明,该方法具有收敛速度快、逼近精度高、鲁棒性好等优点. 相似文献
8.
研究了过程神经网络在非线性动态系统辨识方面的应用.针对传统神经网络在解决系统过程式输入和时间顺序依赖性问题时出现的使模型和算法复杂化的弊端,提出了一种时变输入输出的过程神经元网络模型作为系统的辨识模型,采用基于函数基展开的梯度下降算法,以油田井组注采系统为例验证了模型和算法的有效性,进而说明了过程神经元网络对于解决系统过程式输入的非线性动态系统辨识问题的适用性. 相似文献
9.
根据发电生产过程的实际情况,针对不同时间段的生产工况特点,提出了用不同神经网络辨识不同时段内发电生产过程数学模型的一种新的辨识方法,给出2种神经网络模型,比较了2各辨识方法的结果。 相似文献
10.
11.
基于PID神经网络的非线性系统辨识与控制 总被引:2,自引:0,他引:2
针对工业控制领域中非线性系统采用传统的控制方法不能达到满意的控制效果,提出一种基于P ID神经网络的控制方案,以对其进行辨识和控制。将P ID神经网络引入控制系统中,既具有常规P ID控制结构简单、参数物理意义明确等优点,同时又具有神经网络的并行结构和学习记忆功能及非线性映射能力。仿真结果表明:该控制系统响应速度快、超调量小、稳态精度高,能够快速跟踪系统输出并进行有效控制,且具有一定的自适应性和鲁棒性,满足实时控制的要求。 相似文献
12.
在分析模糊神经网络辨识特点及现状的基础上,设计了一种适用于非线性多输入系统的辨识模型。本模型将T-S模糊模型与5层动态模糊神经网络结构相结合,通过参数学习算法优化辨识结构,对辨识模型进行反馈调节,得到的辨识精度较高。另外,对输入数据采用归一化的方法进行预处理,加快了网络的辨识速率。最后,通过仿真实例证明了该设计的有效性,为模糊神经网络辨识结构的设计提供了一种新的思路和方法。 相似文献
13.
基于神经网络的非线性、大滞后系统辨识是当前研究的热点之一,介绍了神经网络辨识的基本原理,研究了BP与RBF神经网络两种典型网络的设计和算法,最后通过MATLAB进行了仿真分析与比较。仿真结果表明:一致性方面RBF优于BP神经网络,RBF神经网络收敛速度更快,辨识效果更好;泛化性能方面RBF网络较差,不如BP网络。由此得出两种网络各自的优缺点,在实际应用中可以此作为神经网络模型辨识的参考。 相似文献
14.
王磊 《太原师范学院学报(自然科学版)》2006,5(2):17-19,37
将递归内时延神经网络应用于非线性动力学系统中,引入遗传算法作为其学习算法,提出遗传算法新的编码方案,并且在遗传操作中采用适应度的调整策略,通过仿真实验,表明该方法是有效的。 相似文献
15.
16.
人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 相似文献
17.
ZHOU Ming-ming PENG Yan 《中国西部科技》2007,(11)
人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的"瓶颈问题"和神经网络知识表达的"黑箱结构"。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 相似文献
18.
一个基于人工神经元网络的决策支持系统 总被引:1,自引:0,他引:1
运用人工神经元网络的学习优点,针对一类多级指标体系进行综合评价的决策问题构造一种支持非结构化决策问题的系统模型,并利用该系统模型建立一个企业出口潜力决策支持系统,试图对企业出口潜力进行综合评价. 相似文献
19.