首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of Pb in the well-preserved and dated snow and ice layers in glaciers can be used to recon- struct the past changes of atmospheric lead concentra- tions and to determine the trends of atmospheric pollu- tion. The lead data obtained from Greenland ice cap revealed severe air pollution in the Northern Hemi- sphere over the past three millennia. This lead pollution started from as early as Rome times[1], and increased remarkably from the Industrial Revolution to the end of the 1960…  相似文献   

2.
Wu  GuangJian  Yao  TanDong  Xu  BaiQing  Tian  LiDe  Li  Zhen  Duan  KeQin 《科学通报(英文版)》2008,53(16):2506-2512
Based on the oxygen isotope ratio and microparticle record in ice cores recovered at Mt. Muztagata, Eastern Pamirs, the seasonal variations of atmospheric dust have been reconstructed for the past four decades. High dust concentrations and coarser particle grains have the similar trend with oxygen isotope value. Our statistical results indicate that 50%--60% high dust concentration samples occur during the season with high oxygen isotope values (summer), while low dust storm frequency during spring and winter. Back-trajectory analysis shows that the air mass hitting Muztagata predominately came from West Asia (such as Iran-Afghanistan Plateau) and Central Asia, which are the main dust source area for Muztagata. Dust storms in those source areas most frequently occur during summer (from May to August), while frequent dust storm events in northern China mainly occur during spring (March to May). Regions in the path of Asian dust transport, such as in Japan, the North Pacific, and Greenland, also show high dust concentrations during spring (from March to May). Our results indicate that dust storms have different seasonality in different regions within Asia.  相似文献   

3.
Formic and acetic acids (HCOOH, CH3COOH), originating mainly from biosphere (release by plants, combustion of biomass, motor exhaust and oxidation of organism, etc.), are two simple organic chemical com- pounds in troposphere. Though the concentration of these two organic acids is low in atmosphere, they are the main [1] sources of free acidity in precipitation of remote regions , and contribute minor chemical constituents to the balance between anions and cations, especially to some atm…  相似文献   

4.
Whether the solar activity was very low, and especially whether the solar cycle existed, during the Maunder Minimum (1645–1715 AD), have been disputed for a long time. In this paper we use the Guliya NO3 data, which can reflect the solar activity, to analyze the characteristics of the solar activity during the Maunder Minimum. The results show that the solar activity was indeed low, and solar cycle displayed normal as present, i.e. about 11a, in that period. Moreover, it was found that the solar activity contains a 36-year periodic component probably, which might be related to the variations in the length of the sunspot cycle. This finding is of importance for the study of the relationship between the sun variability and the Earth climate change.  相似文献   

5.
Concentrations of Pb in Dasuopu ice core in the Qinghai-Tibetan Plateau have been directly measured by ICP-MS at pg/g level. The Pb profile shows a very significant increase in modern times due to anthropogenic input. The use of leaded gasoline in the South Asian countries may be a main source of Pb in this region. The input of Pb to the Dasuopu Glacier is mainly supplied by Indian summer monsoon moisture which traverses the pass at the head of the Dasuopu Glacier.  相似文献   

6.
7.
Zhao  HuaBiao  Yao  TanDong  Xu  BaiQing  Li  Zhen  Duan  KeQin 《科学通报(英文版)》2008,53(8):1255-1261
As a major alkaline gas in the atmosphere, ammonia (NH3) plays an important role in atmospheric chemistry. However, there is little knowledge about NH3 variations in the Central Asia. Here we analyzed the ammonium (NH4^+) history recorded in an ice core from the East Pamir in Central Asia, which was drilled on the Mt. Muztagata at the elevation of 7010 m a.s.I, in 2003. The core was carefully dated and NH; concentration history during 1907-2002 was reconstructed. The result shows that NH; concentration remained approximately constant until the 1930s after a sudden decrease at the very beginning of the 20th century, followed by a minimum in 1940 before increasing steadily to the peak at the end of 1990s. It is found that the annual mean NH4^+ concentration was strongly associated with the Northern Hemisphere temperature, suggesting the impact of temperature on NH3 emissions in the Central Asia. Moreover, an increase of NH4^+ concentration after 1940 also reflects the enhancement of NH3 emissions from anthropogenic sources such as fertilizer applications and livestock wastes in the 20th century.  相似文献   

8.
The time series of accumulation in recent 300 years correlated well with solar activity in Dasuopu ice core. Results of spectrum analysis on the accumulation time series of the Dasuopu ice core shows that there are some periods that coincide with the periods of solar activity. By comparing the long-time change trend of the accumulation in the Dasuopu ice core with various kinds of indexes of solar activity intensity, a negative correlation is found between the trend and solar activity.  相似文献   

9.
Ice cores recovered from polar ice sheet received and preserved sulfuric acid fallout from explosive volcanic eruptions. DT263 ice core was retrieved from an east Antarctic location. The ice core is dated using a combination of annual layer counting and volcanic time stratigraphic horizon as 780 years (1215-1996 A.D.). The ice core record demonstrates that during the period of approximately 1460-1800 A.D., the accumulation is sharply lower than the levels prior to and after this period. This period coincides with the most recent neoglacial climatic episode, the "Little Ice Age (LIA)", that has been found in numerous Northern Hemisphere proxy and historic records. The non-sea-salt SO42- concentrations indicate seventeen volcanic events in DT263 ice core. Compared with those from previous Antarctic ice cores, significant discrepancies are found between these records in relative volcanic flux of several well-known events. The discrepancies among these records may be explained by the differences in surface topography, accumulation rate, snow drift and distribution which highlight the potential impact of local glaci-ology on ice core volcanic records, analytical techniques used for sulfate measurement, etc. Volcanic eruptions in middle and high southern latitudes affect volcanic records in Antarctic snow more intensively than those in the low latitudes.  相似文献   

10.
The variations of NO\+-\-3 concentration in the Guliya ice core are reconstructed for recent about 1 000 a. Spectrum analysis of NO\+-\-3 indicates significant periodicities in the variations of NO\+-\-3 concentration, which coincide with the periodicities of the solar activity. Therefore, a positive correlation between the variations of NO\+-\-3 concentration and the solar activity is found.  相似文献   

11.
Based on the study of oxygen isotope and microparticle in the Guliya ice core,atmospheric dust and environmental changes in the northwest Tibetan Plateau since the last interglacial were revealed.The microparticle record indicates that low dust load on the Plateau in the interglacial.Particle concentration increased rapidly when the climate turned into the last glacial and reached the maximum during the MIS 4.In the Last Glacial Maximum, however,the enhancement of microparticle concentration was slight,differing to those in the Antarctic and Greenland.On the orbital timescale,both the temperature on the Tibetan Plateau and summer solar insolation in the Northern Hemisphere had their impact on the microparticle record,but the difference in phase and amplitude also existed. Though having the same dust source, microparticle records in the ice cores on the Tibetan Plateau and the Greenland seem to have different significance.  相似文献   

12.
An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that at the end of the 1950s. The decreased net-accumulation is coincident with glacier retreat, which is associated with recent temperature increase in the region that intensified the ablation. Under the background of global warming, such glacier variation trends will aggravate.  相似文献   

13.
14.
Evidence for the “8.2 ka cold event” has been provided mostly from the circum-North Atlantic area. However, whether this cold event occurred in other places is a key to understanding its cause. Here, we provide the evidence for the “8.2 ka cold event” from the Guliya ice core in the northwest Tibetan Plateau, and it was found that the peak cooling (~8.3—8.2 ka) in this ice core was about 7.8—10℃, which was larger than the cooling in the North Atlantic region. The primary causes for this episode were diminished solar activity and weakened thermohaline circulation. Moreover, another weak cold event, centered about 9.4 ka, was also recorded in the Guliya ice core record. These two cold events were concurrent with the ice-rafting episodes in the North Atlantic during the early Holocene, which implies that the millennial-scale climatic cyclicity might exist in the Tibetan Plateau as well as in the North Atlantic.  相似文献   

15.
Hou  Shugui  Qin  Dahe  Yao  Tandong  Zhang  Dongqi  Chen  Tuo 《科学通报(英文版)》2002,47(20):1746-1749
Three ice cores recovered from the Himalayas (i.e. the East Rongbuk Glacier and the Far East Rongbuk Glacier at Mt. Qomolangma (Everest), and the Dasuopu Glacier at Xixiabangma) show a sharp decline in the accumulation rates since the 1950s, which is consistent with the precipitation fluctuation over India and the low northern latitude zone (5°-35°N). Correspondingly, an increasing trend is observed for the ice core accumulations from the central and northern Qingh ai-Tibetan Plateau (i.e. the Xiao Dongkemadi Glacier in the central Tanggula Mountains, the Guliya Ice Cap in the western Kunlun Mountains, and the Dunde Ice Cap in the Qilian Mountains) since the 1950s, which is consistent with the precipi tation fluctuation over the middle-high northern latitude zone (35°-70°N). However, the variation magnitude of the high-elevation ice core accumulations is more significant than that of precipitation at the low-eleva- tion places, suggesti ng its extra sensitivity of high-elevation areas to climatic change. The inter-d ecadal abrupt change of the African-Asian summer monsoon in the1960s may attribute to the recent ice core accumulation change during the recent decades.  相似文献   

16.
Three ice cores distributed across Dasuopu glacier in Himalayas were recovered. A 400-year net annual accumulation record reconstructed from one of the cores reflects the major precipitation trend in the central Himalayas. This record is related closely to the Indian monsoon precipitation. Wavelet and moving T-test were applied to the 400-year-long Dasuopu accumulation record, and significant staggered variability and abrupt change of the record on interannual to centennial time scales are identified. Finally the possible reason for abrupt change of the accumulation record is discussed.  相似文献   

17.
Precipitation variations recorded in Guliya ice core in the past 400 years   总被引:2,自引:0,他引:2  
Based on the Guliya ice core records, the precipitation in the past 400 years was retrieved. Its rela tions with other regions were also analyzed. The results demonstrated that there were two high-precipitation periods and two low-precipitation periods in Guliya ice core since 1571 AD. The average precipitation in the two high-precipitation periods was 42 mm (21%) higher than that in the two low-precipitation periods. The precipitation recorded in the Guliya ice core was consistent with that in Dunde ice core. The variation trends of precipitation in the Guliya ice core and the northern hemisphere are similar. During the extremely wet years in the northern hemisphere, the precipitation recorded in the Guliya ice core was two times the long-term average. However, the annual precipitation was 38% less than that of the long-term average in extremely dry years.  相似文献   

18.
Sr-Nd-Pb isotopic tracer was applied, for the first time, to identifying the sources of the particles in the East Rongbuk ice core from Mt. Qomalangma (Everest). The results show that the particles in the dirty layers originate mainly from local sources, while the particles in the non-dirty layers are consistent with the features of dust from the arid regions in northwestern India. The HYSPLIT model shows that the air trajectory goes first through northwestern India before reaching the drilling site of ice core when dust storms occur in northwestern India, confirming northwestern India as a possible source of dust in the East Rongbuk ice core.  相似文献   

19.
Based on the Guliya ice core records, the precipitation in the past 400 years was retrieved. Its rela tions with other regions were also analyzed. The results demonstrated that there were two high-precipitation periods and two low-precipitation periods in Guliya ice core since 1571 AD. The average precipitation in the two high-precipitation periods was 42 mm (21%) higher than that in the two low-precipitation periods. The precipitation recorded in the Guliya ice core was consistent with that in Dunde ice core. The variation trends of precipitation in the Guliya ice core and the northern hemisphere are similar. During the extremely wet years in the northern hemisphere, the precipitation recorded in the Guliya ice core was two times the long-term average. However, the annual precipitation was 38% less than that of the long-term average in extremely dry years.  相似文献   

20.
Continuous Bi profile of the East Rongbuk (ER) ice core near Mt. Qomolangma reveals nine major volcanic events since AD 1800. Compared with Volcanic Explosivity Index (VEI), it shows that the concentrations of Bi in the ER ice core can reflect the major volcanic events within the key areas. This provides a good horizon layer for ice core dating, as well as a basis for reconstructing a long sequence of volcanic records from the Qinghai-Xizang (Tibet) Plateau ice cores. Supported jointly by National Basic Research Program of China (Grant No. 2007CB411501), National Natural Science Foundation of China (Grant No. 90411003), Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-344) and Hundred Talents Project of the Chinese Academy of Sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号