首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
90°方截面弯管内加装导流板的优化研究   总被引:2,自引:0,他引:2  
许多工程中的弯管都存在严重的磨损和积灰问题,流场分布不均是主要原因之一.应用计算流体力学软件Phoenics对90°方截面弯管内气固两相流进行了数值模拟.模拟采用κ-ε双方程模型和IPSA两相流模型,以速度、压强等参数的流场分布图形方式输出模拟结果,分析了弯管内气固两相流流场的分布规律.弯管内不加导流板时,流场分布不均匀.在弯管中加装导流板具有均匀流场的作用,为管道磨损和积灰问题的解决提供了一条有效的途径.通过模拟分析得到了在弯管内加装导流板的最佳条件:导流板数量为3块,板的圆心角为70°,内侧板和中间板的起始位置为10°、外侧板的起始位置为0°,板间距内外两侧小、中间大.  相似文献   

2.
 为探究充填管道在输送过程中的冲蚀磨损机理, 基于工程流体力学理论及颗粒输送力学模型, 引入离散颗粒轨道模型、塑性冲蚀磨损模型, 对某矿山复杂充填管路条件下浆体特性对管道冲蚀磨损影响进行研究。结果表明, 浆体流速、黏度以及颗粒尺寸对管道冲蚀磨损影响显著, 颗粒形状影响较弱。高流速下, 弯管磨损最为严重, 直管段磨损较轻且分布较为均匀, 流速降低, 主要磨损部位偏向弯管出口部位;弯管部位最大磨损值在15°~30°以及60°~75°之间;此外, 粒径较小时, 磨损严重程度随粒径增加而增大, 粒径达到600 μm 后, 最大磨损值随粒径增加呈现下降趋势。  相似文献   

3.
增压富氧燃煤锅炉省煤器管束磨损研究   总被引:3,自引:0,他引:3  
针对常压空气燃烧和增压富氧燃烧两种工况,利用CFD软件、应用k-ε双方程模型模拟锅炉省煤器管束间烟气的流动,用拉格朗日方法研究管束间颗粒的运动,并利用颗粒与管壁的碰撞和反弹模型考虑颗粒与壁面碰撞后的运动.通过对比3种磨损模型,得出Oka模型考虑的因素相对更全面,与实验数据也比较吻合.利用该模型可得壁面磨损量随流速呈指数规律变化,随着入射角度的增大磨损量先增加后减小,壁面材料硬度越大,磨损量越小,并且随着颗粒粒径增大磨损量略有增加.增压富氧燃烧下,最大磨损速率比常压下小很多,且最大磨损位置也发生了变化,各管排的颗粒撞击和平均磨损速率分布较均匀,除了第1排管外,单管最大磨损区域位于管壁迎风阶两侧60°附近.这对省煤器实际运行及增压富氧燃烧下省煤器的设计有重要意义.  相似文献   

4.
采用计算流体力学(CFD)与离散单元法(DEM)相结合的方法,并将离散随机游走(DRW)模型和颗粒湍流调制模型自定义到相间耦合模型中,研究了模型中各个作用机制对弯管内磨损的影响.结果表明:考虑流体与颗粒的双向耦合作用是模拟粗颗粒两相流动和弯头磨损预测的必要条件;升力对颗粒分布及磨损有较大的影响,而其他次要力影响可忽略不计;重力施加方向不同导致最大磨损率增大20%,但磨损规律相似,最大磨损位置都在约弯头85°处;颗粒在大体积分数工况下,颗粒在弯头的局部聚集使颗粒间碰撞占主导机制,但随着体积分数降低,湍流调制对磨损预测产生一定影响.  相似文献   

5.
为探究烟气中固体颗粒对螺旋槽管束的磨损行为,应用离散相模型对烟气横掠顺列螺旋槽管束进行气固两相流动的数值模拟,并通过用户自定义函数引入新的磨损计算模型.分析了飞灰颗粒对光管和螺旋槽管磨损的差异以及烟气流速、粒径、横向/纵向管距和螺距、槽深等因素对螺旋槽管磨损的影响.结果表明:相同工况下,螺旋槽管管束磨损率比光管管束小10%左右;磨损率随烟气流速、颗粒直径、纵向管距的增大而增大;小粒径颗粒(dp=25μm)最大磨损位置发生在圆心角30°左右,较大粒径颗粒最大磨损位置发生在圆心角40°左右;磨损率随横向管距、螺距、槽深的增大而减小;槽深对螺旋槽管磨损率的影响远低于螺距的影响.  相似文献   

6.
借助分离涡模拟(DES)方法,对圆形截面90°弯管内部及下游管路内湍流流场的流动特性进行了研究.分析了不同入流速度、入流直径和弯管中心线半径对下游流动及壁面压力波动的影响.计算结果表明:弯管小半径附近区域发生边界层分离,在下游出现拟序结构及壁面压力波动;提升入流速度能使频谱特性向高频次发展;改变管路直径并不改变内部流场的主要特征;降低弯管曲率可有效降低下游管路壁面上的压力波动.  相似文献   

7.
液固多相流冲蚀磨损会严重影响管道的使用寿命。以某输油管线设计为研究对象,运用Fluent软件中的Mixture-DPM双向耦合模型研究低浓度颗粒的油水多相流管道流场变化,分析集输管线整体冲蚀速率分布,得到了不同管件冲蚀磨损较严重的区域。为了进一步研究冲蚀磨损的影响因素,选取3种不同的入口流速及原油含水率进行综合对比分析,结果表明:不同管件的冲蚀磨损区域各不相同;90°弯管磨损区域主要集中在外拱壁面,三通管磨损区域主要位于下支管右壁面,渐缩管磨损区域主要位于喉部区域及出口处,盲三通在盲端1/3处形成小型旋涡,且磨损区域主要位于盲端与下支管相贯线区域以及下支管右壁面处;冲蚀速率随入口流速的增加呈指数型增长,指数系数为1.89;随原油含水率增加,冲蚀速率呈倒"U"形变化,当含水率为20%时,冲蚀速率达到最大值。  相似文献   

8.
冲蚀角度和弯头几何尺寸对冲蚀磨损的影响研究   总被引:1,自引:1,他引:0  
林楠  兰惠清  崔钺  赵超 《科学技术与工程》2013,13(18):5135-5140
为了更深入研究输气管道中重点管件——弯头的气固两相流问题,弄清固体颗粒运动轨迹与冲蚀磨损之间的关系,根据相似性原理搭建了模拟试验平台。采用k-ε双方程模型建立相应的气固两相流仿真模型,并将仿真结果同试验结果进行对比,验证了仿真模拟的正确性。在此基础之上,详细进行了固体颗粒的入射角度和弯头的几何尺寸对冲蚀磨损的影响研究。结果表明,冲蚀的入射角度对弯头的冲蚀磨损情况有很大影响。当入射角偏向弯头内管壁时,最大冲蚀率随着入射角的增大而增大。当入射角偏向外侧管壁时,入射角为15°时弯头的最大冲蚀率最大。另外,通过改变弯头的曲率半径和外形,都可以减小弯头的最大冲蚀磨损速率。  相似文献   

9.
为揭示微通道内悬浮颗粒惯性聚集现象的机理,基于相对运动原理,利用数值方法研究了单个球形颗粒在方形微通道中的运动状况,并对颗粒的受力特性进行分析.研究发现:较小粒径的颗粒在较高通道雷诺数下可产生惯性聚集现象,但其受到的惯性升力在通道截面横向位置分布具有很大的波动性;惯性聚集位置随通道雷诺数的增大向通道壁面移动,随颗粒粒径的增大向通道轴心移动;颗粒旋转产生的旋转诱导惯性升力使惯性聚集位置向通道壁面移动.惯性升力分为旋转诱导升力和由剪切诱导升力及壁面诱导升力合成的非旋转诱导升力,而后者是惯性升力的决定性部分.  相似文献   

10.
采用CFD数值模拟方法和经典磨损模型对超音速吹灰过程气固两相流分布及其引起的锅炉管束磨损进行模拟分析,研究吹灰器喷口轴线与管排壁面相切时吹灰压力及喷管偏转角度的影响。采用文献试验结果对CFD模型进行验证。结果表明:当压力从0.6 MPa增至1.6 MPa时,射流出口速度、飞灰颗粒与管壁面的平均碰撞速度和频率均有不同程度增大,管壁最大磨损率增大1.88倍。而当吹灰角度从0°增至60°时,射流出口速度、飞灰颗粒与管壁面的平均碰撞速度和频率均有所减小,锅炉管壁面的最大磨损率减小近57倍,磨损范围变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号