共查询到19条相似文献,搜索用时 125 毫秒
1.
目标跟踪算法的目的是对目标进行跟踪,跟踪滤波算法的好坏直接决定了能否及时地跟踪上目标。在粒子滤波算法中,重采样是很重要的一步,很多介绍粒子滤波的文献都提到了在重采样前设置一个采样门限,以此来判断在粒子滤波算法中是否进行重采样。采用实际仿真的方法研究了采样门限取值对跟踪效果包括跟踪时间以及跟踪精度的影响,采用了最经典常用的跟踪模型进行了仿真研究。 相似文献
2.
3.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。 相似文献
4.
粒子滤波在无线通信、目标跟踪等非线性、非高斯系统中具有广阔的发展前景,但计算量大、实时性差成为了其在实际中应用的瓶颈。降低粒子滤波算法的复杂度,提高运算速度,设计一种运算速度快、性能可靠、占用硬件资源少的粒子滤波算法器将具有重要的理论和现实意义。本文研究了一种基于Mean-Shift算法的粒子滤波器,这种多目标图象中的指定目标跟踪滤波器具有很好的跟踪效果。 相似文献
5.
雷达目标跟踪量测系统常受到闪烁噪声干扰,导致传统滤波算法的滤波性能急剧下降甚至发散。针对标准粒子滤波算法存在粒子退化的缺陷,重采样环节引入禁忌搜索思想,提出了禁忌搜索扩展卡尔曼粒子滤波算法,驱散局部最优的粒子集,使其向全局最优位置靠近,提高采样粒子的有效性。结合交互多模型(IMM),将算法与IMM-PF算法进行仿真比较,结果表明该算法对机动目标具有较优的跟踪性能。 相似文献
6.
目标跟踪技术一直是计算机视觉的核心内容。本文结合粒子滤波与Mean-shift跟踪方法,提出了一种新的自适应目标跟踪方法,通过利用粒子滤波获取目标的初始位置,进而采用Mean-shift跟踪方法,实现目标跟踪的准确定位,同时,通过抑制背景特征分布,更新目标特征分布,从而在跟踪过程中自适应调整目标的模板表示。实验结果表明了本文提出方法的有效性。 相似文献
7.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性. 相似文献
8.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性。 相似文献
9.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性. 相似文献
10.
基于遗传算法的粒子滤波器在目标跟踪中的应用 总被引:4,自引:0,他引:4
粒子滤波器是解决非高斯运动跟踪的一种非常有效的方法,粒子滤波器存在的一个最大的问题是粒子的退化现象,本文中我们提出了一种基于遗传算法的改良粒子滤波器设计方案,以进化设计解决了退化问题,并结合理论与实践证明了其解决粒子退化现象上的优势。 相似文献
11.
The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was devel- oped, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive least- squares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking ca- pability than the Kalman filtering algorithm and recursive least-squares algorithm. 相似文献
12.
13.
基于优化组合重采样的粒子滤波算法 总被引:13,自引:0,他引:13
重采样过程的引入,消除了粒子滤波(PF)过程中的粒子匮乏现象,使PF方法迅速地在多个领域内得到应用,但重采样过程却削弱了粒子的多样性,从而导致滤波性能下降,甚至滤波发散.提出了一种基于优化组合的重采样方法,通过选取粒子和被抛弃粒子的适当线性组合而产生新的粒子,增加了粒子多样性,从而提高PF算法的精度.仿真结果表明,步长系数为零时,该算法等价于基本的PF算法;步长系数很大时,该算法不能收敛;在适当选择步长系数的情况下,该算法的滤波性能高于基本的PF算法.介绍了该重采样算法,仿真结果证明了该算法的有效性. 相似文献
14.
15.
传统主元分析用于故障检测时,由于测量数据中含有噪声和异常点,从而导致系统的误报警.针对传统主元分析在处理含噪数据时的不足,给出了一种把小波变换、滑动中值滤波器和主元分析相结合的方法,利用小波变换和滑动中值滤波器的优点,对主元分析前的数据进行预处理,以去除噪声和异常点,减少和消除了虚警点,并将此方法运用于实际的故障检测中,取得了较好的检测效果,证实了该方法的有效性和可行性. 相似文献
16.
仿生算法与主成分分析相融合的人脸识别方法 总被引:1,自引:1,他引:1
基于人脸特征提取问题可以转化为组合优化问题这一思路,提出了仿生算法与主成分分析相融合的人脸识别算法.该方法先通过主成分分析方法得到人脸特征子空间;然后在已有特征的基础上,分别通过遗传算法与离散粒子群算法进一步提取出可使识别正确率达到最高的人脸图像特征.在ORL人脸库上的实验结果表明:与传统的主成分分析相比,该方法不仅能进一步降低特征子空间的维数,从而提高识别速度,而且能获得更高的识别率. 相似文献
17.
主(小)成分分析的实时算法 总被引:1,自引:0,他引:1
在图像处理、通讯技术等信息处理领域中,主成分分析(PCA)和小成分分析(MCA)是很常用的一种方法.给出能同时得到主成分分析或小成分分析所要求的特征值和特征向量的实时算法. 相似文献
18.
针对粒子数量和质量对粒子滤波(Particle Filter,PF)的退化问题具有重要影响,从大量采样粒子中采用遗传算法(Genetic Algorithm,GA)获得采样重要性重采样粒子滤波(Sampling Importance Resampling Particle Filter,SIRPF)的初始粒子,改善初始粒子质量,并保证其随机性和统计性.在车辆定位仿真中,采用定位精度、滤波发散次数和计算时间为指标对改进的遗传 粒子滤波算法GA SIRPF和传统SIRPF进行比较.结果表明,GA改进了初始粒子质量,减少了粒子退化可能性,提高了系统定位精度. 相似文献
19.
针对真实场景中的车辆跟踪问题, 提出一种改进的粒子滤波车辆跟踪算法. 通过免疫重采样框架减少粒子退化, 保证粒子滤波的有效性, 并参照人工免疫算法的思想建立记忆库, 使算法可较长时间地跟踪目标; 利用背景权重直方图和分块判别机制减少因遮挡导致的跟踪偏离, 同时在运动模型和抗体变异过程中加入自适应学习参数, 提高算法的鲁棒性. 实验结果表明, 在光照变化、 运动突变、 目标遮挡等不同条件下, 该算法具有稳定跟踪的能力, 验证了算法的有效性. 相似文献