首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
射电天文学     
王绶琯 《科学通报》1960,5(15):458-458
射电天文学的使命,是用无线电方法来研究天文。虽则远在1932年人们已经觉察到了来自宇宙空间的无线电波,但真正的射电天文研究却迟至第二次世界大战时才发展起来。开头是一具警戒雷达发现了太阳上发出的强烈无线电噪音。这使人意识到用无线电研究天体的条件已经成熟,因为这表示着,第一,地球大气可以让这样的无线电波通过;  相似文献   

2.
正虽然60年来并未接收到确切的外星无线电信号,但科学家在寻找外星智慧生命方面没有停步。在1960年4月中的大约一周时间里,美国射电天文学家德雷克认为自己可能发现了外星人。这一年的4月8日,他把美国国家射电天文台新的26米直径望远镜对准一颗恒星——天苑四。几分钟后,这部望远镜的读数装置(一种用笔把接收到的信号特征绘在纸上的仪器)疯狂绘图,与望远镜相连的一只扬声器响起一连串强烈脉冲音,  相似文献   

3.
宇宙X射线源     
天体离开我们很遥远,人们认识和了解天体主要是通过接收和分析它们的辐射。我们知道,电磁辐射的频谱是很宽广的,它从无线电波段、红外、可见光、紫外、一直延伸到X射线和γ射线。但在本世纪四十年代以前,天体的观测只局限在可见光波段。四十年代以来,随着无线电技术的发展,开辟了天体的射电观测工作,由此引起了震动天文界的六十年代的四大发现——类星体、脉冲星、星际有机分子和微波背景辐射,使天体物理学的发展出现了一个飞跃。近二十  相似文献   

4.
正像夏威夷莫纳克亚山上的凯特望远镜和其他大型设备使光学天文学引发了一场革命一样,美国最新研制的甚长基线阵和格林班克望远镜也为射电天文的观测展现了更为广阔的前景。由10面抛物面天线构成的甚长基线阵将使射电天文学家以空前的分辨率观测星系和类星体的核心,被称为格林班克望远镜的单抛物面天线的大“耳朵”,会让射电天文学家倾听到其他射电望远镜接收不到的射电源。  相似文献   

5.
以人造卫星上天为标志而兴起的空间天文学,是继十七世纪伽里略开始的光学天文、二十世纪四十年代诞生的射电天文之后,天文学发展的又一个里程碑,它给古老的天文学带来崭新的面貌,使天文学产生一次新的飞跃. 空间天文学是在大气外层空间探索宇宙奥秘的.这种独特的天文观测环境使它具有地面天文观测所无法比拟的优越性.它突破了地球大气的屏障,直接探测天体的辐射、宇宙高能粒子和行星际介质样品,开拓电磁波的观测波段,使天文学有可能进入全波天文时代. 这种内在的优越性使得空间天文学在其发展过程  相似文献   

6.
射电天文手段,是现代天文学研究的三大手段之一,另两种手段是空间天文手段和地面上的天文手段.这三种手段相互配合又竞相发展,促成了当前天文学突飞猛进的局面.1984年10月,我国天文学工作者在密云成功地研制出我国第一架用以观测银河系以及遥远星系的“密云米波段综合孔径射电望远镜”,使我国在天文观测手段和技术方面又取得一大成果.《米波段射电望远镜》一文结合这一成果从射电天文技术和方法的角度介绍了米波段射电望远镜的作用、结构、设计思想和发展计划.  相似文献   

7.
在近十多年来,我们获得了许多激动人心的新天文学知识,这些知识主要是从天文卫星上传送回来的.我们知道,地球的大气层只能透过光和无线电波(及部分红外波),而挡住了其它一切辐射线.因此,只有光学望远镜和射电望远镜才能透过这明净的“窗户”看见天空.要想研究γ射线、X射线、紫外线以及长波红外辐射线,就必须把探测仪器送到大气层之外去.地面上的许多光学和射电天文观测站只同很少几个天文卫星配合进行观测.1983年初,仅有两个天文卫星了,它们的寿命都已超过四年,其中一个是国际紫外光探测者(IUE),目前,它仍然在接收高质量的紫外光谱,另一个是日本的小型X射线卫星白鸟(Hakucho),它也还在监测着天空,搜寻X射线脉冲.  相似文献   

8.
活动星系核     
1944年,天文爱好者雷伯(G.Reber)用简陋的自制射电望远镜在天鹅座发现一个“射电星”.七年以后,它出人意外地被证认为射电星系.以后所作的计算表明,其对应的能量约为10~(60)尔格.这就意味着,它的射电辐射比我们银河系的要大几十万倍以上.如此巨大的能量释放自然激励了不少科学工作者的研究热情.曾有人揣测,这也许是两个硕大的星系相互碰撞的结果,但由计算得知,两个星系碰撞的概率是非常小的,只有一亿分之一,就是说这种“射电暴”现象应是极其罕见的.随着射电仪器的发展,五十年代以来又先后发现了许多类似的射电星系,因而碰撞说就不得不被放弃了.观测发现,一个射电星系的典型结构是,光学中心体两边有一对射电“瓣”.自然可以推测,  相似文献   

9.
甚长基线射电干涉测量天文学即在甚长基线干涉测量方法上发展起来的一门射电天文学分支,不断提高射电望远镜的分辨本领一直是射电天文的一个主要奋斗目标,本世纪六十年代末,由于研究致密射电源精细结构的强烈兴趣和高稳定度原子钟、高速磁带  相似文献   

10.
亚利桑那大学一个观察家小组的克里斯托弗·K·沃克等与路易斯州立密苏里大学的布鲁斯·A·威尔金一起,观察了一颗恒星在实际形成过程中的的情景.他们审查了一个很少被人研究的红外线源IRAS 1629A,它位于首先被红外天文人造卫星发现的蛇夫座洛(ρ)分子云中.研究者们是用12米射电望远镜在毫米波段进行观测的.这台射电望远镜,由国家射电天文观测台在亚利桑那州基特山上投入使用.通过研究由一硫化碳分子辐射出的两条谱线,他们就有可能确定在该天体周围的气体运动模式.直接用可见光观测上述天体是不可能的,因为它处于一个巨大的昏暗区域之中,这个区域仅能被红外线和射电辐射穿透.  相似文献   

11.
王发印 《科学通报》2022,(21):2450-2451
<正>快速射电暴(fast radio burst, FRB)是一种来自宇宙深处的射电爆发现象,持续时间仅为几毫秒,释放的能量超过1039erg. 2007年, Lorimer等人[1]在分析澳大利亚Parkes望远镜巡天数据时首次发现了这种天文现象.该现象成为当前天体物理研究的前沿课题.观测发现一部分快速射电暴可以重复爆发,称为重复快速射电暴[2].科学家已经发现了几百个快速射电暴,但它们的物理起源还是未解之谜[3].  相似文献   

12.
当安装在波卡洪塔斯县的射电望远镜.在西弗吉尼亚的白松树、红枫树和橡树林上空露面时,它们发出阵阵冰箱般的嗡嗡声。设在绿岸(GreenBank)的带有一组8台大型碟式天线的国家射电天文观测台,看起来似乎是错放在这一乡村小地方。1960年,一位名叫狄拉克(D.Drake)的年轻射电天文学家使用一台85英寸的抛物面射电天线进行了世界上首次对地球外智慧生命的探索(SETI计划)。这项开历史先河的计划叫做“阿兹玛”计划,它监听可能从两个邻近星球─—ε埃瑞达尼星(EpsilonEridani)和τ塞提星(TanCeti)─—附近发射出的外星信号。然而…  相似文献   

13.
纪树臣 《科学通报》1987,32(12):925-925
一、引言 近几年,太阳射电观测技术发展如此之快,以至于能在空间测量出0.03至1AU(2MHz—30KHz)处的Ⅲ型爆发源位置。在这方面的先驱工作者是Dulk等人。1980—1981年,他们用ISEE-3飞船上的射电天文接收机成功地测量出120个Ⅲ型爆发源的位置,从而得出了行星际磁场线的纬度分布,见图1。  相似文献   

14.
中国天文研究水平总体而言与世界先进国家相比还有很大差距,最根本的原因是我们国家的天文研究设备太差.天文设备成为中国天文研究长期竞争力和原创能力的主要瓶颈.长期以来中国的射电天文研究1一方面依靠杰出天文学家利用国际大射电望远镜进行观测,取得一些(但不是很多)有影响的成果;另一方面是靠自己发展设备,建设一些中小观测平台.  相似文献   

15.
本期封底是四幅类星体3C273高分辨率的射电图,它是加州理工学院的一组射电天文学家,用长基线射电干涉仪网,在1977年5月~1980年5月三年间观测到的。它表明,这个类星体以9.6倍光速的速度在膨胀着。  相似文献   

16.
超导天线     
伯明翰大学的工程师们已制成一种小型的高温陶瓷超导体无线电天线,它实际上可辐射被其接收的全部能量。普通天线当它的尺寸与它发射或接收的无线电波波长差不多时其工作为最佳。然而,由于无线电波  相似文献   

17.
尹其丰 《科学通报》1980,25(3):124-124
一、引言超新星遗迹是强宇宙射电源,观测证实其射电辐射机制是同步加速器辐射,它的很多性质可以根据超新星爆炸的质量喷射解释。但是,超新星遗迹中的电子加速机制,即如何产生高能电子的问题,至今没有得到满意的解释。  相似文献   

18.
季江徽 《科学通报》2019,64(23):2369-2373
<正>2014年9月,智利北部阿塔卡马沙漠高原上新建成的阿塔卡马毫米/亚毫米波阵列(Atacama Large Millimeter/submillimeter Array,ALMA)进行了仪器测试,开展了持续的天文观测项目.ALMA是用干涉方法进行天文观测的射电天线阵,由66个天线构成,总长度达到16km.ALMA是一个国际合作建设的天文工程,由来自欧洲、北美和东亚等的各国(地区)合作运行.天文学家利用ALMA拍摄了  相似文献   

19.
吴太心 《科学通报》1960,5(13):402-402
一、量子无线电学——无线电电子学中的一个新分支量子无线电物理和量子无线电技术(简称量子无线电学)是无线电电子学的一个新的分支。过去几十年,无线电电子学的发展几乎全部建筑在电真空器件上。人们利用各种各样的电子管来产生、接收和放大电磁波。在这种器件里电磁振荡的能量是和真空管中自由电子的运动能量相联系的。直到最近十几年,由  相似文献   

20.
黑洞大合照     
正这张由天文学家花费数年时间对射电望远镜所采集信息进行处理而得到的图片,记录的是银河系中心区域的黑洞分布。图中有2.5万个白点,其中每一个都代表一个活跃的超质量黑洞。黑洞虽然不释放可见光,但会发射超低频无线电,天文学家可以借助无线电信号探测到黑洞。通过超低频无线电探测黑洞的最大挑战,是必须摆脱大气电离层对无线电信号的干扰。为此,科学家利用超级计算机,每隔四秒对接收到的无线电信号进行一次电离层干扰校正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号