首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
利用反证法、构造染色法和色集合事先分配法,讨论完全四部图Kn1,n2,n3,n4(n1≤n2=n34或n1=n2=n3=n4)的顶点被多重集可区别的一般全染色,给出一个最优染色方案,并确定相应染色的色数.  相似文献   

2.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

3.
本文用组合分析的方法及数学归纳法证明了以下一些组合关系式. (1)C(n+k,r)=sum from m=0 to k (k!)/((k-m)!m!)C(n,r-m); (2)sum from m=0 to n K~m C(n,m)=*(1+k)~n; (3)sum from k=0 to n K~m=sum from k=1 to n S(m,k) ((n+1)!)/((k+1)(n-k)!); (4)sum from p=0 to m F(n,p)=((n+m)!)/(n!m!); (5)sum from q=1 to m qF(n,q)=((n+m)!n)/((m-1)!(n+1)!); (6)sum from p=1 to n F(p,m)=((n+m)!)/((m+1)!(n-1)!); (7)sum from r=0 to S (F_(mi2r)F_(n+2r)+F_(m+2r+1)F_(n+2r+1)); =F_(2??+1)(F_(2??+1)F_(m+n+1)+F_(2??)F_(m+n)); (8)sum from k=0 to n C_k=C_(n+5)-2; (9)S_k??5=sum from p=0 to n C_(k+5??)=C_(5n+1+k+γ_(k,5));  相似文献   

4.
1、引言 Riemann ζ—函数ζ(2n)=sum from k=1 to ∞(1/k~(2n))的值,有古典的公式可以计算,但比较复杂。在学习文[1]中建立了sum from k=1 to ∞(1/k~2)=π~2/6的一个简单证明之后,使我联想得能否也建立sum from k=1 to ∞(1/k~4)=π~4/90,sum from k=1 to ∞(1/k~6)=π~6/945,sum from k=1 to ∞(1/k~8)=π~8/9450等的简单证明,并使[1]的方法更进一步推广,形成某种规律,较一般地解决这些问题,这就是此文的目的。  相似文献   

5.
设SPCn是[n]上的降序且保序严格部分变换半群。对n≥5和3≤r≤n-2,证明了半群V(n,r)={α∈SPCn:|lim(α)|≤r}是幂等元生成的,且它的秩和幂等秩均为sum from n-1 to k=r((nk)(k-1 r-1))。  相似文献   

6.
1.引言:設k次對稱函數f_k(z)=z+sum from n=1 to ∞a_(nk+1)~(k)z~(nk+1)在單位圓|z|<1中是正則的,單葉的。此種函數的全體成一函數族S_k。設k次對稱函數F_k(z)=z+sum from n=1 to ∞c_(nk+1)~(k)/Z~(nk+1)在區域1<|z|<∞中是正則的,單葉的。此種函數的全體成一函數族∑_k。簡寫S_1為S。關於S_2中函數的係數,曾有人推测|a_(2n+1)~(2)|≤1,但當,2≥2時,就有人舉例证明它不一定成立。本文證明:  相似文献   

7.
设ζ_1ζ_n(n≥1)是i.i.d.实值随机变量,a_1,…,a_m是一组实数。定义X_a=sum from i=1 to (?) (a_iζ_i+a,(?)=1/n sum from i=1 to n (X_a)。)本文证明:若Eexp(tζ)<∞(A|t|<η),则服从大偏差原理。  相似文献   

8.
关于自然数组成的级数sum from k=1 to ∞ (k)和自然数平方组成的级数sum from k=1 to ∞ (k~2)的前n项求和公式: S_1(n)=sum from k=1 to n (k)=n(n+1)/2 S_2(n)=sum from k=1 to n (k~2)=1/6n(n+1)(2n+1) (2)我们大家非常熟悉,并且在一些文献中分别给出不同的证明。本文利用公式(1),(2)介绍几种自然数立方组成的级数sum from k=1 to ∞ (k~3)的前n项和公式:  相似文献   

9.
Riomann—Zota 函数ζ(s)=sum from n=1 to ∞ 1/n~s、首先,1736年证明了ζ(2)π~2/6之后,ζ(2k)(k=1,2,…)相继求得,但ζ(3)ζ(5),…,ζ(2k+1)…迄今尚未求得,1978年6月在法国马数学会议上,Apery 宣布证明了ζ(3)是无理数。本文给出用 Plana 求和公式对函数ζ(3)的数值计算并与级数求和对比进行数值分析,同时也给出了ζ(5),ζ(7)、ζ(9)的部分数值计算结果。  相似文献   

10.
§1.引言设 f_k(z)=z+sum from n=1 to ∞ a_(nk+1)~((k))z~(nk+1)为在单位圆|z|<1内正则且单叶的函数,用 S_k 表示该函数族,特别记 S_1=S.对于 f_1(z)∈S;f_2(z)∈S_2的相邻系数模的差,戈鲁金曾有如下之估计:[1](1) ||a_n+1|-|a_n||≤C_(1)n~(1/4)log n,(2) ||a_(2n+1)~((2))|-|a_(2n-1)~((2))||≤C_2n~(-1/4)log n.其中的 C_1,C_2以及以后的 C_3,C_4,……都是绝对常数。对于映射单位圆|z|<1为关于原点为星形领域的函数 f(z)戈鲁金亦有估计:[1],[2]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号