首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果.  相似文献   

2.
针对BP神经网络初始化敏感性高、易陷入局部最小值的问题,研究基于粒子群优化和布谷鸟搜索融合的BP神经网络优化方法,提出一种分层的融合优化模型MB-PSO-CS-BP。该方法在下层使用Mini-Batch算法将粒子群分割为小种群,利用粒子群优化算法进行局部搜索;在此基础上采用布谷鸟搜索算法进行全局搜索,从而减小BP神经网络初始化的敏感性,减缓其陷入局部最优的症状。在实际应用领域的数据集上对所提出算法进行实验验证。相较于一般的PSO-BP模型与CS-BP模型,所提出的MB-PSO-CS-BP融合模型在全局最优值、均方误差等多个评估指标上有所改进,进一步提升了利用BP神经网络进行预测的准确性与稳定性。  相似文献   

3.
混沌免疫粒子群优化算法在BP网络训练中的应用   总被引:1,自引:0,他引:1  
将人工免疫系统中的克隆选择和混沌算法引入粒子群优化算法,提出一种混沌免疫粒子群优化算法.算法的主要特点是利用克隆和混沌变异等操作,提高收敛速度和种群的多样性.结合Iris分类问题,将新算法应用到BP网络的权值优化中,并和基于标准PSO算法的方法和单纯BP网络训练进行比较.实验结果表明,该算法性能优于所比较的两种算法,并且具有良好的收敛性和稳定性.  相似文献   

4.
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度.  相似文献   

5.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度.  相似文献   

6.
针对数据规模的扩大,重复记录检测效率往往不能进一步提升的问题,提出一种粒子群优化BP神经网络的重复记录检测方法,充分利用了神经网络的非线性映射和粒子群算法的全局优化特性。将基于学习的思想和进化的思想应用到重复记录检测中,避开了传统方法计算属性权重的问题。理论分析和实验表明:该方法不仅具有好的检测精度,而且具有很好的时间效率,能够有效地解决大数据量的相似重复记录检测问题。  相似文献   

7.
将粒子群优化的BP神经网络作为模型,参考自适应控制系统的控制器,把参考模型输出与系统实际输出的均方误差作为PSO-BP神经网络的适应函数,通过PSO算法强大的搜索性能使自适应控制系统的均方误差最小化.仿真实例结果表明,基于粒子群优化算法的BP神经网络自适应控制系统收敛快、精度高,有较好的网络的泛化和适应能力,能够很好地控制系统的输出跟随参考模型的输出.  相似文献   

8.
将粒子群优化算法用于前向神经网络权值的学习算法研究,以神经网络学习算法研究的典型问题之一的XOR问题作为研究实例,针对算法的收敛性、学习速度以及算法对初值的鲁棒性等性能指标,分别对标准的PSO算法、改进的PSO算法以及BP算法及其带动量项的BP算法进行了比较研究.研究表明,PSO算法在前向神经网络权值的学习算法中其所有的性能指标均优于传统的BP算法,PSO算法在神经网络的应用中具有广阔的前景.  相似文献   

9.
网络规模不断扩大的同时,也容易受到各种安全风险的威胁,因此,必须对网络安全风险进行准确评估。传统的评估系统中存在的趋势性、周期性以及随机性影响评估准确率的问题,导致评估的结果大都不准确;为此,提出并设计了基于混沌粒子群优化BP神经网络的网络安全风险评估系统。首先对系统的硬件进行了设计,并得出了设计的框图;然后使用混沌粒子群的优化算法和BP神经网络的算法对系统的软件进行了设计;最后进行了对比的实验。实验结果表明,该系统能够更好的协调,并处理评估过程中出现的问题,不会受到趋势性、周期性以及随机性的影响,能够更好的发挥网络安全评估的效果,提高评估的准确率,减小相对的误差。  相似文献   

10.
文章提出了一种将粒子群优化(PSO)算法训练的神经网络用于高校教师教学质量综合评价的方法。该方法使用由PSO训练的BP模型来拟合影响教师教学质量评价的众多指标与评价结果之间的复杂关系。与BP算法比较,该方法在提高误差精度的同时可以加快训练收敛的速度,其泛化性能也比较好。  相似文献   

11.
针对滚动轴承故障诊断方法存在的局限性及缺陷,在利用小波分析提取滚动轴承故障信号特征向量基础上,提出基于粒子群 蛙跳算法优化的BP神经网络滚动轴承故障诊断方法。该方法采用粒子群 蛙跳算法优化BP神经网络结构参数,利用改进BP算法和样本数据训练BP神经网络,实现滚动轴承运行正常和4种不同故障状态的诊断。实验验证结果表明,基于粒子群 蛙跳算法的BP神经网络方法诊断误差最大值仅为005,为未优化的神经网络诊断误差的1/16;与其他算法相比,基于粒子群 蛙跳算法优化的BP神经网络方法的训练时间、训练误差和诊断精度各项指标均为最优,可实现滚动轴承故障的快速、准确、有效诊断。  相似文献   

12.
近年来,中国煤炭等化石能源占终端能源消费的比例偏高,引起了严重的环境污染和能源资源的浪费,为了实现经济社会的绿色、可持续发展,中国提出了在终端能源消费环节实施电能替代的发展战略。因此,为了更精确地对电能替代潜力预测,基于改进的GRA-IPSO-BP模型,基于电能替代潜力影响因素的量化指标,构建了基于改进的GRA-IPSO-BP电能替代潜力预测模型。以浙江地区为例,拟合浙江地区电能替代电量的历史变化规律,并对浙江地区未来电能替代电量进行预测,研究方法有助于判断电能替代发展水平,有助于电能替代工作的推进。  相似文献   

13.
基于BP神经网络的电力系统短期负荷预测   总被引:2,自引:0,他引:2  
电力系统短期负荷预测的准确性对电力系统的实时运行调度至关重要.采用BP神经网络对电力系统负荷短期预测研究,根据影响电力系统的负荷因素如温度、天气等确定模型构成,同时利用遗传算法对BP神经网络进行优化.实例表明,利用遗传算法优化的BP神经网络在电力系统短期负荷预测中是有效的.  相似文献   

14.
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容。传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点。为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证。结果表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性。  相似文献   

15.
针对拥有庞大数据量的全息图再现像质量不理想的问题, 提出一种针对粒子群优化算法(PSO: Particle Swarm Optimization)中学习因子和惯性权值进行动态调整的方法, 将改进后的算法与反向传播(BP: Back Propagation)神经网络相融合形成改进型粒子群优化BP 神经网络(MPSO-BP: Modified Particle Swarm Optimizing
BP Neural Network)并用于全息图压缩。通过与BP 神经网络和粒子群优化BP 神经网络(PSO-BP: Particle Swarm Optimizing BP Neural Network)压缩算法进行对比, 证明了该网络压缩算法在保持较好的压缩效率时得到的全息图再现像质量更好。  相似文献   

16.
17.
基于粒子群优化的BP神经网络预测方法及其应用研究   总被引:1,自引:0,他引:1  
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度.  相似文献   

18.
在分析影响税收主要因素的基础上,将反向传播(BP)神经网络理论应用于税收的预测.首先对初始数据进行预处理,使其适应BP神经网络学习的要求,然后建立基于BP神经网络的税收预测模型.采用实际数据对模型进行验证,并将其与传统的统计模型相比较,证明了基于BP神经网络的税收预测模型有较高的精度和较强的实用性.  相似文献   

19.
基于BP神经网络的IP网络流量预测   总被引:3,自引:0,他引:3  
采用了BP神经网络对网络流量数据的时间序列进行建模与预测。从分析网络流量的特征着手,构建了基于BP神经网络的IP网络流量预测模型,并进行了仿真验证。实验结果表明,该模型对网络流量的预测是有效可行的,并具有良好的收敛性和稳定性。  相似文献   

20.
利用量子粒子群优化神经网络集成个体的网络结构和连接权值,对集成个体进行支持向量机回归集成,建立一个新的量子粒子群优化神经网络集成股市预测模型。新模型能有效提高神经网络集成系统的泛化能力,易操作,稳定性好,预测精度高,具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号