首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
探讨Diophantus方程Σni=0(x+i)2=y2在n≤50下的正整数解问题,得到了以下结果:Diophantus方程Σni=0(x+i)2=y2在n≤50下有正整数解的充要条件为n∈{1,10,22,23,25,32,46,48,49}.  相似文献   

2.
探讨Diophantus方程∑I=0^n(x i)^2=y^2在n≤50下的正整数解问题,得到了以下结果:Diophan-tus方程∑I=0^n(x i)^2=y^2在n≤50下有正整数解的充要条件为n∈{1,10,22,23,25,32,46,48,49}。  相似文献   

3.
本文给出了n=4时的全部正整数解,并讨论了n=4时的唯一性问题.  相似文献   

4.
研究了一类不定方程求正整数解的问题.借助数论中的一些简单结果,推导并证明了Catalan方程xn+1=y2的正整数解的一般公式.Catalan方程xn+1=y2的一切正整数解可表示为(x,y,n)=(k2-1,k,1)或(2,3,3),这里k为大于1的正整数.  相似文献   

5.
设D是可使D-1是奇素数方幂的正整数,给出了确定方程组x^2 Dy^2=1-D和x^2=2z^2-1的全部正整数解(x,y,z)的一般方法.  相似文献   

6.
给出了形如x2-(4n+2)y2=-1(n∈N)型Pell方程有无整数解的几个判别法则.  相似文献   

7.
8.
当丢番图方程∑ni=1∑nj=1aijxixj=0有一组不全为0的整数解时,给出了它满足(x1,x2,…,xn)=1的全部整数解的公式.  相似文献   

9.
设n是一正整数,讨论了广义Euler函数方程φ_6(n)=2~(ω(n))的可解性,基于初等方法获得了其所有的16个解.  相似文献   

10.
设D是无平方因子正整数.证明了:当D不能被形如6k 1之形素数整除时,如果D含有素因数p适合P=5(mod 12),则方程x^3 3^3n=Dy^2没有适合god(x,y)=1的正整数解(x,y,n).  相似文献   

11.
引入了不定方程正整数解的有关性质的引理和定理,并在此基础之上给出了求解该不定方程的所有正整数解的因数分析解法.  相似文献   

12.
讨论了方程φ(φ(φ(x)))=2的正整数解问题,利用初等方法给出了方程的全部17个正整数解,其中φ(x)为Euler函数.  相似文献   

13.
利用初等数论方法及同余性质证明了椭圆曲线方程y2=qx(x2-256)除整数解(0,0),(16,0)外还有其它正整数解,即:(ⅰ)当q=5时方程仅有正整数解(x,y)=(20,120),(144,3840);(ⅱ)当q=29时方程仅有正整解(x,y)=(156816,334414080);(ⅲ)当q=41时方程仅有正...  相似文献   

14.
利用数论方法得到了丢番图(x 1)2 (x 2)2 … (x n)2=y2有正整数解的必要充分条件,证明了当n=25时,无正整数解,当n=49时,仅有正整数解(x,y)=(24,357),当n=121时仅有正整数解(x,y)=(243,3366),同时证明了n=2,11时必有无穷多组正整数解,并给出了无穷多解的通解公式.  相似文献   

15.
关于Diophantine方程y~2=px(x~2+2)   总被引:1,自引:0,他引:1  
对于Diophantine方程y2=px(x2+2),这里p为奇素数,证明了:当p=2593时,它有唯一的正整数解(x,y)=(72,31116).  相似文献   

16.
17.
采用初等方法与解析方法,对2个含有n个变量的推广的Smarandache方程(x1a1/x1+1/x1ax1)+(x2a1/x2+1/x2ax2)+…+(xna1/xn+1/xnaxn)=2na(x1a1/x1+1/x1ax1)·(x2a1/x2+1/x2ax2)·…·(xna1/xn+1/xnaxn)=(2a)n进行了研究,并得出其有正整数解x1=x2=x3=…=xn=1.  相似文献   

18.
利用初等的方法和技巧,研究方程φe(n)=2ω(n)(e=8,12)的可解性,确定其全部正整数解.  相似文献   

19.
本文给出了不定方程x~2+(k-1)y~2=kz~2与x~(k+2)-x~k-py~k的正整数解,并给出了实例.  相似文献   

20.
设D是不能被6k 1之形素数整除的无平方因子正奇数时,论文证明了:如果D≡1,3(mod8)或D有适合p≡5(mod12)的素因数p,则方程2332Dyxn=-没有适合n>1的正整数解(x,y,n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号