首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper presents a comparative analysis of linear and mixed models for short‐term forecasting of a real data series with a high percentage of missing data. Data are the series of significant wave heights registered at regular periods of three hours by a buoy placed in the Bay of Biscay. The series is interpolated with a linear predictor which minimizes the forecast mean square error. The linear models are seasonal ARIMA models and the mixed models have a linear component and a non‐linear seasonal component. The non‐linear component is estimated by a non‐parametric regression of data versus time. Short‐term forecasts, no more than two days ahead, are of interest because they can be used by the port authorities to notify the fleet. Several models are fitted and compared by their forecasting behaviour. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
    
In this paper, we investigate the performance of a class of M‐estimators for both symmetric and asymmetric conditional heteroscedastic models in the prediction of value‐at‐risk. The class of estimators includes the least absolute deviation (LAD), Huber's, Cauchy and B‐estimator, as well as the well‐known quasi maximum likelihood estimator (QMLE). We use a wide range of summary statistics to compare both the in‐sample and out‐of‐sample VaR estimates of three well‐known stock indices. Our empirical study suggests that in general Cauchy, Huber and B‐estimator have better performance in predicting one‐step‐ahead VaR than the commonly used QMLE. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
    
Much published data is subject to a process of revision due, for example, to additional source data, which generates multiple vintages of data on the same generic variable, a process termed the data measurement process or DMP. This article is concerned with several interrelated aspects of the DMP for UK Gross National Product. Relevant questions include the following. Is the DMP well behaved in the sense of providing a single stochastic trend in the vector time series of vintages? Is one of the vintages of data, for example the ‘final’, the sole vintage generating the long‐memory component? Does the multivariate framework proposed here add to the debate on the existence of a unit root in GNP? The likely implicit assumptions of users (that the DMP is well behaved and the final vintage is ‘best’) can be cast in terms of testable hypotheses; and we show that these ‘standard’ assumptions have not always been empirically founded. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
    
In this paper we lay out a two‐region dynamic stochastic general equilibrium (DSGE) model of an open economy within the European Monetary Union. The model, which is built in the New Keynesian tradition, contains real and nominal rigidities such as habit formation in consumption, price and wage stickiness as well as rich stochastic structure. The framework also incorporates the theory of unemployment, small open economy aspects and a nominal interest rate that is set exogenously by the area‐wide monetary authority. As an illustration, the model is estimated on Luxembourgish data. We evaluate the properties of the estimated model and assess its forecasting performance relative to reduced‐form model such as vector autoregression (VAR). In addition, we study the empirical validity of the DSGE model restrictions by applying a DSGE‐VAR approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper derives the best linear unbiased predictor for an unbalanced nested error components panel data model. This predictor is useful in many econometric applications that are usually based on unbalanced panel data and have a nested (hierarchical) structure. Examples include predicting student performance in a class in a school, or house prices in a neighborhood in a county or a state. Using Monte Carlo simulations, we show that this predictor is better in root mean square error performance than the usual fixed‐ or random‐effects predictors ignoring the nested structure of the data. This is applied to forecasting the productivity of public capital in the private sector using nested panel data of 48 contiguous American states. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper discusses the asymptotic efficiency of estimators for optimal portfolios when returns are vector‐valued non‐Gaussian stationary processes. We give the asymptotic distribution of portfolio estimators ? for non‐Gaussian dependent return processes. Next we address the problem of asymptotic efficiency for the class of estimators ?. First, it is shown that there are some cases when the asymptotic variance of ? under non‐Gaussianity can be smaller than that under Gaussianity. The result shows that non‐Gaussianity of the returns does not always affect the efficiency badly. Second, we give a necessary and sufficient condition for ? to be asymptotically efficient when the return process is Gaussian, which shows that ? is not asymptotically efficient generally. From this point of view we propose to use maximum likelihood type estimators for g, which are asymptotically efficient. Furthermore, we investigate the problem of predicting the one‐step‐ahead optimal portfolio return by the estimated portfolio based on ? and examine the mean squares prediction error. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
    
We compare linear autoregressive (AR) models and self‐exciting threshold autoregressive (SETAR) models in terms of their point forecast performance, and their ability to characterize the uncertainty surrounding those forecasts, i.e. interval or density forecasts. A two‐regime SETAR process is used as the data‐generating process in an extensive set of Monte Carlo simulations, and we consider the discriminatory power of recently developed methods of forecast evaluation for different degrees of non‐linearity. We find that the interval and density evaluation methods are unlikely to show the linear model to be deficient on samples of the size typical for macroeconomic data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
    
Micro‐founded dynamic stochastic general equilibrium (DSGE) models appear to be particularly suited to evaluating the consequences of alternative macroeconomic policies. Recently, increasing efforts have been undertaken by policymakers to use these models for forecasting, although this proved to be problematic due to estimation and identification issues. Hybrid DSGE models have become popular for dealing with some of the model misspecifications and the trade‐off between theoretical coherence and empirical fit, thus allowing them to compete in terms of predictability with VAR models. However, DSGE and VAR models are still linear and they do not consider time variation in parameters that could account for inherent nonlinearities and capture the adaptive underlying structure of the economy in a robust manner. This study conducts a comparative evaluation of the out‐of‐sample predictive performance of many different specifications of DSGE models and various classes of VAR models, using datasets for the real GDP, the harmonized CPI and the nominal short‐term interest rate series in the euro area. Simple and hybrid DSGE models were implemented, including DSGE‐VAR and factor‐augmented DGSE, and tested against standard, Bayesian and factor‐augmented VARs. Moreover, a new state‐space time‐varying VAR model is presented. The total period spanned from 1970:Q1 to 2010:Q4 with an out‐of‐sample testing period of 2006:Q1–2010:Q4, which covers the global financial crisis and the EU debt crisis. The results of this study can be useful in conducting monetary policy analysis and macro‐forecasting in the euro area. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
    
This paper develops a New‐Keynesian Dynamic Stochastic General Equilibrium (NKDSGE) model for forecasting the growth rate of output, inflation, and the nominal short‐term interest rate (91 days Treasury Bill rate) for the South African economy. The model is estimated via maximum likelihood technique for quarterly data over the period of 1970:1–2000:4. Based on a recursive estimation using the Kalman filter algorithm, out‐of‐sample forecasts from the NKDSGE model are compared with forecasts generated from the classical and Bayesian variants of vector autoregression (VAR) models for the period 2001:1–2006:4. The results indicate that in terms of out‐of‐sample forecasting, the NKDSGE model outperforms both the classical and Bayesian VARs for inflation, but not for output growth and nominal short‐term interest rate. However, differences in RMSEs are not significant across the models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this paper we introduce a new testing procedure for evaluating the rationality of fixed‐event forecasts based on a pseudo‐maximum likelihood estimator. The procedure is designed to be robust to departures in the normality assumption. A model is introduced to show that such departures are likely when forecasters experience a credibility loss when they make large changes to their forecasts. The test is illustrated using monthly fixed‐event forecasts produced by four UK institutions. Use of the robust test leads to the conclusion that certain forecasts are rational while use of the Gaussian‐based test implies that certain forecasts are irrational. The difference in the results is due to the nature of the underlying data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
    
This study compares the forecasting performance of a structural exchange rate model that combines the purchasing power parity condition with the interest rate differential in the long run, with some alternative exchange rate models. The analysis is applied to the Norwegian exchange rate. The long‐run equilibrium relationship is embedded in a parsimonious representation for the exchange rate. The structural exchange rate representation is stable over the sample and outperforms a random walk in an out‐of‐sample forecasting exercise at one to four horizons. Ignoring the interest rate differential in the long run, however, the structural model no longer outperforms a random walk. Copyright © 2006 John Wiley _ Sons, Ltd.  相似文献   

12.
    
In this paper, we adopt a panel vector autoregressive (PVAR) approach to estimating and forecasting inflation dynamics in four different sectors—industry, services, construction and agriculture—across the euro area and its four largest member states: France, Germany, Italy and Spain. By modelling inflation together with real activity, employment and wages at the sectoral level, we are able to disentangle the role of unit labour costs and profit margins as the fundamental determinants of price dynamics on the supply side. In out‐of‐sample forecast comparisons, the PVAR approach performs well against popular alternatives, especially at a short forecast horizon and relative to standard VAR forecasts based on aggregate economy‐wide data. Over longer forecast horizons, the accuracy of the PVAR model tends to decline relative to that of the univariate alternatives, while it remains high relative to the aggregate VAR forecasts. We show that these findings are driven by the event of the Great Recession. Our qualitative results carry over to a multi‐country extension of the PVAR approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
  总被引:1,自引:0,他引:1  
Multivariate time series describing relative contributions to a total (like proportional data) are called compositional time series. They need to be transformed first to the usual Euclidean geometry before a time series model is fitted. It is shown how an appropriate transformation can be chosen, resulting in coordinates with respect to the Aitchison geometry of compositional data. Using vector autoregressive models, the standard approach based on raw data is compared with the compositional approach based on transformed data. The results from the compositional approach are consistent with the relative nature of the observations, while the analysis of the raw data leads to several inconsistencies and artifacts. The compositional approach is extended to the case when also the total of the compositional parts is of interest. Moreover, a concise methodology for an interpretation of the coordinates in the transformed space together with the corresponding statistical inference (like hypotheses testing) is provided. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
    
This paper explores the relationship between the Australian real estate and equity market between 1980 and 1999. The results from this study show three specific outcomes that extend the current literature on real estate finance. First, it is shown that structural shifts in stock and property markets can lead to the emergence of an unstable linear relationship between these markets. That is, full‐sample results support bi‐directional Granger causality between equity and real estate returns, whereas when sub‐samples are chosen that account for structural shifts the results generally show that changes within stock market prices influence real estate market returns, but not vice versa. Second, the results also indicate that non‐linear causality tests show a strong unidirectional relationship running from the stock market to the real estate market. Finally, from this empirical evidence a trading strategy is developed which offers superior performance when compared to adopting a passive strategy for investing in Australian securitized property. These results appear to have important implications for managing property assets in the funds management industry and also for the pricing efficiency within the Australian property market. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
    
This article introduces a novel framework for analysing long‐horizon forecasting of the near non‐stationary AR(1) model. Using the local to unity specification of the autoregressive parameter, I derive the asymptotic distributions of long‐horizon forecast errors both for the unrestricted AR(1), estimated using an ordinary least squares (OLS) regression, and for the random walk (RW). I then identify functions, relating local to unity ‘drift’ to forecast horizon, such that OLS and RW forecasts share the same expected square error. OLS forecasts are preferred on one side of these ‘forecasting thresholds’, while RW forecasts are preferred on the other. In addition to explaining the relative performance of forecasts from these two models, these thresholds prove useful in developing model selection criteria that help a forecaster reduce error. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
    
Forecasting for a time series of low counts, such as forecasting the number of patents to be awarded to an industry, is an important research topic in socio‐economic sectors. Recently (2004), Freeland and McCabe introduced a Gaussian type stationary correlation model‐based forecasting which appears to work well for the stationary time series of low counts. In practice, however, it may happen that the time series of counts will be non‐stationary and also the series may contain over‐dispersed counts. To develop the forecasting functions for this type of non‐stationary over‐dispersed data, the paper provides an extension of the stationary correlation models for Poisson counts to the non‐stationary correlation models for negative binomial counts. The forecasting methodology appears to work well, for example, for a US time series of polio counts, whereas the existing Bayesian methods of forecasting appear to encounter serious convergence problems. Further, a simulation study is conducted to examine the performance of the proposed forecasting functions, which appear to work well irrespective of whether the time series contains small or large counts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
    
In this study, a non‐stationary Markov chain model and a vector autoregressive moving average with exogenous variables coupled with a logistic function (VARMAX‐L) are used to analyze and predict the stability of a retail mortgage portfolio, based on the stress test framework. The method introduced in this paper can be used to forecast the transition probabilities in a retail mortgage over pre‐specified states, given a shock with a certain magnitude. Hence this method provides a dynamic picture of the portfolio transition process through which one can assess its behavior over time. While the paper concentrates on retail mortgages, the methodology of this study can be adapted also to analyze other credit products in banks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
    
A non‐linear dynamic model is introduced for multiplicative seasonal time series that follows and extends the X‐11 paradigm where the observed time series is a product of trend, seasonal and irregular factors. A selection of standard seasonal and trend component models used in additive dynamic time series models are adapted for the multiplicative framework and a non‐linear filtering procedure is proposed. The results are illustrated and compared to X‐11 and log‐additive models using real data. In particular it is shown that the new procedures do not suffer from the trend bias present in log‐additive models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
    
This paper uses the dynamic factor model framework, which accommodates a large cross‐section of macroeconomic time series, for forecasting regional house price inflation. In this study, we forecast house price inflation for five metropolitan areas of South Africa using principal components obtained from 282 quarterly macroeconomic time series in the period 1980:1 to 2006:4. The results, based on the root mean square errors of one to four quarters ahead out‐of‐sample forecasts over the period 2001:1 to 2006:4 indicate that, in the majority of the cases, the Dynamic Factor Model statistically outperforms the vector autoregressive models, using both the classical and the Bayesian treatments. We also consider spatial and non‐spatial specifications. Our results indicate that macroeconomic fundamentals in forecasting house price inflation are important. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross‐bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non‐linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high‐frequency exchange rate returns, and their out‐of‐sample forecasting performance is compared to that of other time series models. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号