共查询到2条相似文献,搜索用时 0 毫秒
1.
An underlying assumption in Multivariate Singular Spectrum Analysis (MSSA) is that the time series are governed by a linear recurrent continuation. However, in the presence of a structural break, multiple series can be transferred from one homogeneous state to another over a comparatively short time breaking this assumption. As a consequence, forecasting performance can degrade significantly. In this paper, we propose a state-dependent model to incorporate the movement of states in the linear recurrent formula called a State-Dependent Multivariate SSA (SD-MSSA) model. The proposed model is examined for its reliability in the presence of a structural break by conducting an empirical analysis covering both synthetic and real data. Comparison with standard MSSA, BVAR, VAR and VECM models shows the proposed model outperforms all three models significantly. 相似文献
2.
This paper explores the ability of factor models to predict the dynamics of US and UK interest rate swap spreads within a linear and a non‐linear framework. We reject linearity for the US and UK swap spreads in favour of a regime‐switching smooth transition vector autoregressive (STVAR) model, where the switching between regimes is controlled by the slope of the US term structure of interest rates. We compare the ability of the STVAR model to predict swap spreads with that of a non‐linear nearest‐neighbours model as well as that of linear AR and VAR models. We find some evidence that the non‐linear models predict better than the linear ones. At short horizons, the nearest‐neighbours (NN) model predicts better than the STVAR model US swap spreads in periods of increasing risk conditions and UK swap spreads in periods of decreasing risk conditions. At long horizons, the STVAR model increases its forecasting ability over the linear models, whereas the NN model does not outperform the rest of the models. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献