首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
对于任意的α∈[0,1],Nikiforov提出了矩阵Aα(G)=αD (G)+(1-α) A(G),记为图G的Aα-矩阵,其中A(G)是G的邻接矩阵,D(G)是G的度对角矩阵.矩阵Aα(G)的最大特征值称为图G的Aα-谱半径.本文考虑有k个悬挂点的所有单圈图,确定了具有最大Aα-谱半径的图.  相似文献   

2.
G的广义距离矩阵定义为Dα(G)=αTr(G)+(1-α)D(G),0≤α≤1,其中D(G)和Tr(G)分别表示图G的距离矩阵和传递度对角矩阵.研究了广义距离相关谱,给出了其谱半径、第二大特征值的界,及自补图的广义距离谱.  相似文献   

3.
图G的顶点集V(G)={v1,v2,…,vn},其路矩阵记为P(G)=(pij)n×n,pij表示图中vi,vj之间内部顶点不相交路径的最大数目。定义路拉普拉斯矩阵和路无符号拉普拉斯矩阵并得到了其谱半径和能量的界。  相似文献   

4.
令A(G)表示G的邻接矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.在这篇文章中,我们分别确定了给定点连通度、给定块数和给定悬挂点数的图类中无符号拉普拉斯谱半径最大的图的结构.  相似文献   

5.
D为图的G度序列对角矩阵,A为图的邻接矩阵.Q=D+A为图的无符号拉普拉斯矩阵.Q的最大特征值ξ(G)称为图G的无符号拉普拉斯谱半径.这里将图的2度,平均2度等概念推广到k度与平均k度,得到了图的关于无符号拉普拉斯谱半径的一个新的上、下界.最后举例与图的几个已知经典的界进行了比较.  相似文献   

6.
设G是一个简单连通图,矩阵L(G)=D(G)-A(G)称为图的Laplacian矩阵,其中D(G)是图的度对角线矩阵,A(G)是G的邻接矩阵.连通图G的Laplacian谱展是图的最大特征值与次小特征值之差.边数等于顶点数加1的连通图叫做双圈图.研究了双圈图的Laplacian谱展,并确定了具有最大Laplacian谱展的双圈图.  相似文献   

7.
对于连通图G,矩阵Q(G)=D(G) A(G)称为图G的拟拉普拉斯矩阵,其中D(G)为图的度对角矩阵,A(G)为图的邻接矩阵.本文利用矩阵的一些性质,推导出连通图的拟拉普拉斯谱半径的一个上界.并将该上界与已有的一些结论结合具体图例作了优越性比较.  相似文献   

8.
图的拉普拉斯谱半径的新上界   总被引:1,自引:1,他引:0  
设D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵,则图G的Laplace矩阵定义为L(G)=D(G)-A(G).利用非负矩阵理论和图论知识给出了两个用图的边数、顶点数,以及顶点的最大度、次大度.最小度表示的L(G)谱半径的新上界,并确定等式成立的极图.最后举例说明这些上界使Laplace谱半径的估计值更小,从而在一定程度上改进了一些文献的结果.  相似文献   

9.
令Ks,t是完全二部图,Kn是完全图,其中s,t和n是正整数.令B4,l是由l个共享一条边的K4构成的图,■l是由B4,l的所有生成子图构成的集合.本文研究了禁用■的图的最大α-谱半径问题.利用■k+1和K2,l+1的结构特点以及基本不等式,在具有n个顶点、最大度为Δ且禁用■的连通图中,获得了α-谱半径的上界,且刻画了达到上界的极值图.相应地,在具有n个顶点、最大度为Δ且禁用■k+1或K2,l+1的连通图中,得到了α-谱半径的上界.  相似文献   

10.
图G的距离谱半径μ(G)是指图G的距离矩阵D(G)的最大特征值。利用循环图的直径,讨论了几类循环图的距离谱半径,得出了它们的上界;并且讨论了循环图的卡氏积图的距离谱半径的上界。  相似文献   

11.
随着计算机技术和网络技术的不断发展,图的谱被广泛应用于网络拓扑结构的特征分析,Laplacian矩阵的谱(特别是最大特征值和次小特征值)在网络结构中扮演重要角色.设G=(V,E)是一个具有n个顶点的简单图,A(G)为G的邻接矩阵,D(G)为G的度对角矩阵.定义G的Laplacian矩阵为L(G)=D(G)-A(G),设L(G)的特征值为μ1(G)≥μ2(G)≥…≥μn-1(G)≥μn(G)=0,最大特征值μ1(G)称为图G的Laplacian谱半径;次小特征值μn-1也称作图G的代数连通度.本文讨论了树的L(G)的最大与次小特征值和μ1(G)+μn-1(G)的上界,得到几个有意义的结论.  相似文献   

12.
设A(G)为图G的邻接矩阵,D(G)为图G的度对角矩阵,称L(G)=D(G)-A(G)为图G的拉普拉斯矩阵,则特征多项式?G(μ)=det(μI-L(G))的所有根称为图G的拉普拉斯特征值。一个端点的度不小于3,另一个端点的度等于1的路,被称为外部路。对于任意图G,如果G的外部路上包含P3子图,则删除P3不影响图G中拉普拉斯特征值1的重数。通过递归删除外部路上的P3,刻画了不含拉普拉斯特征值1的星型树、双星树和三星树。  相似文献   

13.
设G是n阶简单连通图,则L(G)=D(G)-A(G)称为图G的拉普拉斯矩阵,其中A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵.结合非负矩阵谱理论,利用图的边数、顶点数、最大度、最小度给出了图的拉普拉斯谱半径的新上界,同时给出达到上界的极图,并通过举例将所给的上界与已有的上界作比较,结果说明在一定程度上新上界优于已有结果.  相似文献   

14.
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值.  相似文献   

15.
设G=(V,E)为n阶简单连通图,D(G)和A(G)分表示图G的度对角矩阵和邻接矩阵,则L(G)=D(G)-A(G)称为图G的Laplace矩阵。利用图的顶点度、最大度、平均二次度和图的公共邻点数,结合非负矩阵谱理论给出了图的Laplace谱半径的新上界,同时给出了达到上界的极图。  相似文献   

16.
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.  相似文献   

17.
The unique graph which minimizes λ(Aα(G )) among all blocks with even number is determined. Some new bounds on λ(Aα(G )) in terms of the clique number, minimum degree and numbers of edges are also given.  相似文献   

18.
定义单位开圆盘D内的一个解析函数类Pα(D)={f∈A(D):Re[f(z)/z]≥α}(0<α≤1),给出其增长和掩盖定理.作为应用,得到Pα(D)上的Bohr半径r0.特别地,当α=1/2时,r0=1/3,推广了凸函数的Bohr半径.  相似文献   

19.
图的无符号拉普拉斯矩阵定义为其度矩阵与邻接矩阵之和,其最大特征值称为图的无符号拉普拉斯谱半径.本文证明了若连通图G的无符号拉普拉斯谱半径大于2(△(G)+1/△(G))-3/2,那么G中必定含2个最大度点.  相似文献   

20.
高敬振  马玉 《山东科学》2011,24(1):61-64
设G是有限简单无向图,是G-U不连通,且G-U的每个分支的阶都至少为4的边集U称为G的4-限制边割。基数最小的4-限制边割称为λ4-割,最小基数称作4-限制边连通度,记作λ44(G)。若λ4(G)=ξ4(G),称G是λ4-最优的。若任意一个λ4-割都孤立一个四阶连通子图,则称G是超级-λ4的。应用邻域交条件给出了图是λ4-最优的和超级-λ4的充分条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号