首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
以硅酸钠和铝酸钠为主要原料,在无导向剂条件下,采用直接晶化法制备了NaY型分子筛。考察了陈化时间、晶化时间、晶化温度、体系的水含量和n(Na2O)/n(SiO2)等因素对分子筛结构和形貌的影响。分别采用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品进行了表征。结果表明:延长陈化时间有利于生成更多的晶核,但陈化时间过长会导致分子筛粒径增大;晶化温度的升高和晶化时间的延长使分子筛结晶度升高,但产物易出现转晶现象,生成杂晶;n(Na2O)/n(SiO2)和n(H2O)/n(Al2O3)对产物结晶度影响较大,合成高结晶度的NaY型分子筛所需要的合适的n(Na2O)/n(SiO2)和n(H2O)/n(Al2O3)分别为1.0和160。  相似文献   

2.
以工业级水玻璃和铝酸钠为原料,采用水热法,在无导向剂的条件下通过硅铝胶自导向合成相对结晶度高的Na Y分子筛,并采用XRD等手段对合成产物进行了结构和性质表征.考察了原料配比、陈化时间、陈化温度、晶化时间、晶化温度等合成条件对Na Y分子筛相对结晶度的影响.结果表明:在凝胶物质的量的比为7 Na2O∶Al2O3∶10 Si O2∶180H2O、陈化时间3 h、陈化温度40℃、晶化温度100℃和晶化时间14 h的优化条件下,合成了相对结晶度为161.1%的Na Y分子筛.  相似文献   

3.
以乙二胺(EDA)为模板剂,采用水热法合成出ZSM-5型沸石分子筛,通过XRD、FT-IR等手段对所合成分子筛结构进行表征.考察了模板剂用量、硅铝摩尔比、晶种、晶化时间及硫酸用量等因素对分子筛合成的影响.实验结果表明,在晶化温度为165~178℃,晶化时间为20~40h,n(SiO2):n(NH2(CH2)2NH2):n(Al2O3):n(Na2O):n(H2SO4):n(H2O)=100:(40~83):(0.63~1.40):31:(7.6~24.6):1 192体系中能合成出ZSM-5沸石分子筛.利用ZSM-5沸石分子筛催化醛氨缩合反应对所合成产物进行了催化性能研究.实验发现,以所合成的产品为催化剂,吡啶碱总产率可达50%~70%.  相似文献   

4.
导向剂室温老化合成低硅X型沸石   总被引:2,自引:0,他引:2  
利用导向剂室温(15~30℃)老化后高温晶化合成低硅X型沸石(LSX),用XRD测定样品晶型.对导向剂作用的研究表明,加入老化5h的导向剂17Na2O.6SiO2.Al2O3.250H2O可抑制LSX样品中的羟基方钠石(HS)杂晶,但没有加快LSX反应体系的晶化速度.对原料配比和反应条件的研究表明,产物对H2O/(Na2O K2O)摩尔比和Na2O/(Na2O K2O)摩尔比非常敏感,稍有变化就会引起杂晶的生成;随着室温老化和晶化温度的升高以及时间的延长,样品LSX结晶度增大.室温(25~30℃)老化12h、110℃晶化3h合成的LSX结晶度好、纯度高,Si/Al摩尔比为1.02±0.03.  相似文献   

5.
以煅烧煤系高岭土为原料,采用氢氧化钠溶液水热合成制备NaA分子筛.以NaA分子筛晶体的生长过程为基础,利用XRD、SEM对NaA分子筛晶体生长规律进行表征, 并对其结晶机理进行了分析.结果表明,煤系高岭土制备NaA分子筛的最佳工艺条件是:煅烧温度为725 ℃;配料比 m(Na2O)/m(SiO2)为3,m(H2O)/m (Na2O)为40;胶化条件为70 ℃×2 h;晶化条件为100 ℃×6 h.所制NaA分子筛的钙离子交换量为316.55 g CaCO3/g.在NaA分子筛的碱液合成过程中,在晶化条件下,凝胶固相中的硅铝酸根骨架解聚重排晶化成沸石晶体骨架.  相似文献   

6.
用X射线衍射等测试方法研究"酸处理红辉沸石-碱-铝酸钠-水”水热反应体系混合物的硅铝的量比(n(SiO2)/n(Al2O3))、钠硅的量比(n(Na2O)/n(SiO2))、水钠的量比(n(H2O)/n(Na2O))以及晶化温度和晶化时间对P型沸石合成的影响;确定以酸处理红辉沸石为原料合成P型沸石的工艺流程和技术参数.工艺流程为酸处理红辉沸石→水热反应→晶化合成→过滤、洗涤→烘干→P型沸石产品;最佳技术参数为n(SiO2)/n(Al2O3)=3~4;n(Na2O)/n(SiO2)=1.0~1.2;n(H2O)/n(Na2O)=28~37;θ=95~100℃;t=6~8h.这为天然红辉沸石资源的开发利用开辟了新的途径.  相似文献   

7.
MCM-22分子筛静态水热晶化法合成的优化   总被引:1,自引:0,他引:1  
系统地考察静态水热晶化法合成条件如硅源、晶化时间、凝胶配比及成胶老化方式等对MCM-22合成的影响,并通过XRD、SEM和FT-IR等方法对合成的MCM-22分子筛进行表征.研究结果表明:硅酸、硅溶胶、硅胶在适当比例下都能合成出较纯的MCM-22分子筛,但其聚集形貌及晶粒大小有所不同;晶化时间为8~10 d,MCM-22分子筛结晶度较高;凝胶的初始配比对产物物相的影响较大,最佳条件为n(SiO2)/n(Al2O3)=30~60,n(OH-)/n(SiO2)=0.15~0.25,n(HMI)/n(SiO2)=0.35~0.6,n(H2O)/n(SiO2)=20~45;成胶老化方式对MCM-22分子筛的晶化影响不大.  相似文献   

8.
以江苏盱眙凹凸棒原土为原料,采用静水沉降-离心分离法对其提纯,探索提纯土中降低铁含量、提供最大硅源的改性方式,采用碱溶-水热晶化工艺,调整n(Na_2O)∶n(SiO_2)∶n(Al_2O_3)∶n(H_2O)的配比、晶化温度、晶化时间的因素参数,以X-ray diffraction(XRD)表征、结晶度、产出率与NH+4离子交换容量为指标分析4A分子筛的制备条件;考察其吸附NH+4性能.结果表明,PA基于3mol/L HCl酸浸除铁-800℃煅烧活化-5mol/L Na OH碱溶处理,滤液添加铝源后水热晶化可合成高结晶度-产出率的4A分子筛ACAPA-4AMS,当n(Na_2O)∶n(SiO_2)=2.1,n(H_2O)∶n(Na_2O)=60,n(SiO_2)∶n(Al_2O_3)=1.5,在90℃晶化8h时,NH+4交换容量最高,为159mmol/100g,符合工业标准.5℃ACAPA-4AMS饱和吸附量68.04mg/g,吸附符合Freundlich方程且为吸热过程,但温度对低浓度(5mg/L)NH+4-N的去除率影响不大.该研究为凹凸棒土在严寒村镇高氨氮水源水的应用提供理论基础.  相似文献   

9.
利用高岭土合成4A沸石分子筛   总被引:1,自引:0,他引:1  
以高岭土为主要原料,通过焙烧活化-碱化-水热反应技术合成了4A沸石分子筛.利用TG DTA、XRD、SEM等考察了高岭土转化分子筛的相变历程,并通过正交实验探讨了影响分子筛转化率的主要因素.研究表明,高岭土在600℃下焙烧2 h可转化为偏高岭土,再与NaOH、去离子水按摩尔比n(Na2O)/n(SiO2)为2.0、n(H2O)/n(Na2O)为60充分混合,经水浴陈化、晶化后可合成结晶良好、静态水吸附达22.67%的4A沸石分子筛.  相似文献   

10.
从铝源、物料加入方式、晶化温度与时间以及铝磷比五个方面探究了SAPO-11分子筛合成的最佳条件。通过XRD、粒径分析和SEM对样品进行了表征。结果表明,以拟薄水铝石为铝源,物料配比为n(Al2O3)∶n(P2O5)∶n(DPA)∶n(SiO2)∶n(H2O)=1.5∶1∶1.2∶0.3∶120,用物料加入方式III配置混合溶液,180℃晶化24h,可合成出高纯度和高结晶度的SAPO-11分子筛。  相似文献   

11.
以Na2SiO3和Cu(NO3)2为原料,采用水热法合成了晶型良好的铜皂石,考察了原料配比、晶化温度和晶化时间对铜皂石合成的影响,利用XRD、FT-IR、N2物理吸附和SEM等手段对样品进行了表征。结果表明:在理想的化学配比(n(Si):n(Cu)=4:3)下能合成结晶度高的铜皂石;在温度60℃下就可以合成铜皂石,但温度升高,合成的铜皂石结晶度增加;在晶化时间为6h时,就可以合成铜皂石,随晶化时间的延长,合成的铜皂石结晶度增加。在原料理想配比下,晶化温度200℃、晶化时间24h的水热条件为铜皂石的最佳合成条件。  相似文献   

12.
利用高炉渣、尾矿和粉煤灰各自成分特点,在未添加任何晶核剂和其他化学试剂条件下,使用烧结法制得了不同CaO/SiO2质量比的10%Al2 O3(质量分数)矿渣微晶玻璃.通过差热分析、X射线衍射、扫描电子显微镜等分析手段,分析了CaO/SiO2质量比和析晶温度对高炉渣-尾矿-粉煤灰微晶玻璃样品的晶相变化规律、析晶行为和主要力学性能的影响.随着CaO/SiO2质量比增大,析晶活化能不断减小,Si-O四面体连接强度下降,质点移动加强,各组开始析晶温度和晶化温度逐渐减小.当玻璃样品中钙硅氧化物的质量比为0.4时,分别在886℃和982℃形核、析晶保温1 h 后,可以得到抗折强度103.59 MPa、显微硬度5.3 GPa、耐酸性0.25%(质量损失率)、耐碱性小于0.1%,主晶相为透辉石的最佳力学性能的微晶玻璃样品.  相似文献   

13.
CaO-SiO_2-Na_2O-CaF_2-Al_2O_3-MgO渣系的粘度和结晶温度   总被引:3,自引:3,他引:3  
采用CaOSiO2Na2OCaF2Al2O3MgO渣系,用差热分析仪测定熔渣的结晶温度,用粘度测定仪测定熔渣的粘度,研究结晶温度和粘度与碱度、w(Na2CO3)、w(CaF2)、w(Al2O3)和w(MgO)之间的关系,并得到相应的回归方程·利用这两个回归方程,可以预测连铸保护渣的结晶性能和粘性特征·化学成分通过改变粘度,来影响晶核形成速度和晶体成长速度,从而决定了熔渣的结晶性能·结晶温度随着粘度的减小而升高·渣系中只有MgO可以在减小粘度的同时降低结晶温度  相似文献   

14.
采用水热合成法,以三乙烯四胺(TETA)为模板剂,磷酸、正硅酸乙酯、乙酸镁及氢氧化铝为原料,通过调节模板剂的用量、晶化温度、晶化时间和 pH 值,合成出含镁的磷酸硅铝分子筛,原料的物质的量之比为 n(P): n(Si): n(H2O): n(Ni): n(Al): n(TETA)=1.00:0.25:0.18:0.51:30.00:0.65,晶化温度为150~170, pH ℃值为6.0,晶化时间为24 h  相似文献   

15.
采用溶胶一凝胶法制备了二氧化硅负载硅钨钼酸催化剂.以二氧化硅负载硅钨钼酸(H4SiW6M06040/SiO2)为催化剂,30%H202为氧源,催化氧化环己酮合成己二酸.探讨H4SiW6Mo6O40/SiO2对氧化反应的催化活性,较系统地研究了二氧化硅负载硅钨钼酸用量、反应温度、H。02用量、反应时间等因素对产物收率的影响.实验表明:H4SiW6Mo6O40/SiO2是合成己二酸的良好催化剂;在n(环日酮):n(H2O2):n(H4SiW6Mo6O40/SiO2)=100:198:0.124,反应温度为110℃,反应时间3.5h的最佳条件下,己二酸的收率可达86.7%.  相似文献   

16.
This paper uses a new stabilizer of H2O2 bleaching and compares the stabilizing effect of the new stabilizer with that of Na2SiO3. The results show that the new stabilizer is better than the conventional Na2SiO3. The optimum conditions of the stable latter process bleaching of H2O2 as follow: NaOH 3%,MgSO4 0.05%, H2O2 3%, stabilizer 3%, temperature 80℃, concentration 12%, time 3h.  相似文献   

17.
在高浓度条件下,浆料被直接挤入快速加热器,在10~20秒内快速升温到80~90℃,同时加入0.5%H<,2>O<,2>、1%NaOH、3%Na<,2>SiO<,2>、使化学药剂与浆料充分混合.用搅拌机摩擦揉搓,此时再加入设计浓度为1%、2%、3%的漂白剂H2O2进行漂白.漂白时间为2~3h,用造纸气浮澄清水将浆料稀释至3.5%左右的浓度,从塔低输出,再加硫酸中和,调pH为7.0左右.最后将干燥的再生纸进行白度、色度、回收率分析.  相似文献   

18.
目的合成2-(1-苯胺基)苯甲基-环己酮。方法在室温条件下,采用溶胶凝胶法合成H_4SiW_(12)O_(40)/SiO_2催化剂,高效催化环己酮、苯甲醛和苯胺的Mannich反应合成2-(1-苯胺基)苯甲基-环己酮。结果在n(苯甲醛):n(环己酮):n(苯胺)=1.0∶1.8∶1.8,反应温度为20℃,催化剂的用量占反应物料总质量的10%,反应时间为23h的最佳条件下,2-(1-苯胺基)苯甲基-环己酮的收率可达77.5%。结论 H_4SiW_(12)O_(40)/SiO_2是合成2-(1-苯胺基)苯甲基-环己酮的优良催化剂,整个反应体系具有条件温和、操作简单、对环境友好和催化剂可重复回收利用等优点。  相似文献   

19.
Rapid synthesis of ZSM-5 zeolite catalyst for amination of ethanolamine   总被引:1,自引:0,他引:1  
ZSM-5 zeolite was rapidly synthesized in system containing ethylenediamine from the initial gel: (5-8) Na2O:44 EDA:A12O3:100 SiO2:4000 H2O. The crystals were lath-shaped. The effect of pretreatment and alkalinity on crystallinity was investigated. The pretreatment of silicate source can cut down the crystallization time. Tuning the system alkalinity and controlling crystallization time can ensure forming of pure crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号