首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic code 1990. Outlook   总被引:2,自引:0,他引:2  
T H Jukes 《Experientia》1990,46(11-12):1149-1157
The genetic code is evolving as shown by 9 departures from the universal code: 6 of them are in mitochondria and 3 are in nuclear codes. We propose that these changes are preceded by disappearance of a codon from coding sequences in mRNA of an organism or organelle. The function of the codon that disappears is taken by other, synonymous codons, so that there is no change in amino acid sequences of proteins. The deleted codon then reappears with a new function. Wobble pairing between anticodons and codons has evolved, starting with a single UNN anticodon pairing with 4 codons. Directional mutation pressure affects codon usage and may produce codon reassignments, especially of stop codons. Selenocysteine is coded by UGA, which is also a stop codon, and this anomaly is discussed. The outlook for discovery of more changes in the code is favorable, and open reading frames should be compared with actual sequential analyses of protein molecules in this search.  相似文献   

2.
Prokaryotic genetic code   总被引:8,自引:0,他引:8  
S Osawa  A Muto  T Ohama  Y Andachi  R Tanaka  F Yamao 《Experientia》1990,46(11-12):1097-1106
The prokaryotic genetic code has been influenced by directional mutation pressure (GC/AT pressure) that has been exerted on the entire genome. This pressure affects the synonymous codon choice, the amino acid composition of proteins and tRNA anticodons. Unassigned codons would have been produced in bacteria with extremely high GC or AT genomes by deleting certain codons and the corresponding tRNAs. A high AT pressure together with genomic economization led to a change in assignment of the UGA codon, from stop to tryptophan, in Mycoplasma.  相似文献   

3.
C A Roten  D Karamata 《Experientia》1992,48(10):921-931
Degradation products of peptidoglycan, the universal bacterial cell wall constituent, were previously found in animal tissues and urine. Reassessment and quantitative analysis of available data lead to an original concept, i.e. that eukaryotic cells synthesize peptidoglycan. We present a model in which this endogenously synthesized peptidoglycan is essential for the processes of eukaryotic cell division and sleep induction in animals. Genes for peptidoglycan metabolism, like those for lysine biosynthesis in plants, are probably inherited from endosymbiotic bacteria, the ancestors of mitochondria and chloroplasts. Corollaries of this concept, i.e. roles for peptidoglycan metabolism in tumor formation and in the biological clock, are supported by abundant evidence. We propose that many interactions between bacteria and eukaryotes are conditioned by their common genetic heritage.  相似文献   

4.
Degradation products of peptidoglycan, the universal bacterial cell wall constituent, were previously found in animal tissues and urine. Reassessment and quantitative analysis of available data lead to an original concept, i.e. that eukaryotic cells synthesize peptidoglycan. We present a model in which this endogenously synthesized peptidoglycan is essential for the processes of eukaryotic cell division and sleep induction in animals. Genes for peptidoglycan metabolism, like those for lysine biosynthesis in plants, are probably inherited from endosymbiotic bacteria, the ancestors of mitochondria and chloroplasts. Corollaries of this concept, i.e. roles for peptidoglycan metabolism in tumor formation and in the biological clock, are supported by abundant evidence. We propose that many interactions between bacteria and eukaryotes are conditioned by their common genetic heritage.  相似文献   

5.
6.
The DNA sequences of three bacteriophages are analysed in order to localise those parts coding for a protein. A weak stability on the DNA molecule allows us to characterize the beginning and the end of genes. A survey of the codons used shows that the cause for this weak stability is the systematic use of A-T bases in third position, which is made possible by the degeneracy of the genetic code.  相似文献   

7.
M Müller 《Experientia》1992,48(2):118-129
Numerous proteins in pro- and eukaryotes must cross cellular membranes in order to reach their site of function. Many of these proteins carry signal sequences that are removed by specific signal peptidases during, or shortly after, membrane transport. Signal peptidases have been identified in the rough endoplasmic reticulum, the matrix and inner membrane of mitochondria, the stroma and thylakoid membrane of chloroplasts, the bacterial plasma membrane and the thylakoid membrane of cyanobacteria. The composition of these peptidases varies between one and several subunits. No site-specific inhibitors are known for the majority of these enzymes. Accordingly, signal peptidases recognize structural motifs rather than linear amino acid sequences. Such motifs have become evident by employing extensive site-directed mutagenesis to investigate the anatomy of signal sequences. Analysis of the reaction specificities and the primary sequences of several signal peptidases suggests that the enzymes of the endoplasmic reticulum, the inner mitochondrial membrane and the thylakoid membrane of chloroplasts all have evolved from bacterial progenitors.  相似文献   

8.
Numerous proteins in pro-and eukaryotes must cross cellular membranes in order to reach their site of function. Many of these proteins carry signal sequences that are removed by specific signal peptidases during, or shortly after, membrane transport. Signal peptidases have been identified in the rough endoplasmic reticulum, the matrix and inner membrane of mitochondria, the stroma and thylakoid membrane of chloroplasts, the bacterial plasma membrane and the thylakoid membrane of cyanobacteria. The composition of these peptidases varies between one and several subunits. No site-specific inhibitors are known for the majority of these enzymes. Accordingly, signal peptidases recognize structural motifs rather than linear amino acid sequences. Such motifs have become evident by employing extensive site-directed mutagenesis to investigate the anatomy of signal sequences. Analysis of the reaction specificities and the primary sequences of several signal peptidases suggests that the enzymes of the endoplasmic reticulum, the inner mitochondrial membrane and the thylakoid membrane of chloroplasts all have evolved from bacterial progenitors.  相似文献   

9.
Membrane-embedded β-barrel proteins span the membrane via multiple amphipathic β-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. β-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.  相似文献   

10.
H Koblet  R Wyler  U Kohler 《Experientia》1979,35(5):576-578
The induction of the antiviral state by Interferon might reflect the decrease of the rate of biosynthesis, the degradation or the alteration of one or several tRNAs. This could result in rate-limiting concentrations for codons common in viral RNA but rare in host mRNA. Altered methylation of tRNA could be the basis of such a phenomenon. However, we could not find an altered extent of methylation of total tRNA or an altered pattern of methylation, if mixed tRNAs were chromatographed on MAK- or BD-cellulose columns, despite a large range of conditions of pretreatment of chick embryo fibroblast cultures with interferon.  相似文献   

11.
Human mitochondrial tRNAs in health and disease   总被引:6,自引:0,他引:6  
The human mitochondrial genome encodes 13 proteins, all subunits of the respiratory chain complexes and thus involved in energy metabolism. These genes are translated by 22 transfer RNAs (tRNAs), also encoded by the mitochondrial genome, which form the minimal set required for reading all codons. Human mitochondrial tRNAs gained interest with the rapid discovery of correlations between point mutations in their genes and various neuromuscular and neurodegenerative disorders. In this review, emerging fundamental knowledge on the structure/function relationships of these particular tRNAs and an overview of the large variety of mechanisms within translation, affected by mutations, are summarized. Also, initial results on wide-ranging molecular consequences of mutations outside the frame of mitochondrial translation are highlighted. While knowledge of mitochondrial tRNAs in both health and disease increases, deciphering the intricate network of events leading different genotypes to the variety of phenotypes requires further investigation using adapted model systems.Received 3 December 2002; received after revision 14 January 2003; accepted 27 January 2003  相似文献   

12.
13.
Summary The induction of the antiviral state by Interferon might reflect the decrease of the rate of biosynthesis, the degradation or the alteration of one or several tRNAs. This could result in rate-limiting concentrations for codons common in viral RNA but rare in host mRNA. Altered methylation of tRNA could be the basis of such a phenomenon. However, we could not find an altered extent of methylation of total tRNA or an altered pattern of methylation, if mixed tRNAs were chromatographed on MAK- or BD-cellulose columns, despite a large range of conditions of pretreatment of chick embryo fibroblast cultures with interferon.Work supported by the Swiss National Science Foundation, grants 3.1050 and 3.540.  相似文献   

14.
The evolutionary relationships of ribosomal proteins from eubacteria, archaea, eukaryotes, chloroplasts and mitochondria were examined by their degree of conservation, their structural and functional properties and by the occurrence of conserved structural elements. The structural domains formed by the different protein families were studied. The occurrence of monophyletic groups was investigated for each protein family within the archaea. Phylogenetic trees were constructed between these organisms and together with the homologous sequences of the other phylogenetic domains. All organisms belonging to the archaea clearly formed a monophyletic group. The conserved sequence motifs were checked for the potential to form similar secondary structural elements. Received 24 October 1996; accepted 30 October 1996  相似文献   

15.
Summary For the isolation of chloroplasts in non-aqueous media the following organic solvents are suitable: pentane, hexane, heptane, petroleum ether and carbon tetrachloride. These solvents cause a minimum loss of lipids.The loss of lipids and some lipid components of frozendried and ground shoots fromElodea canadensis during the isolation of chloroplasts in non-aqueous media (petroleum ether b. r. 60–80°C and petroleum ether-carbon tetrachloride mixtures) is reported.  相似文献   

16.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and P(i). The bacterial and mitochondrial H(+)-ATP synthases both consist of a membranous sector, F0, which forms a H(+)-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H(+)-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

17.
In the sixties James Watson suggested a twosite model for the ribosome comprising the P site for the peptidyl transfer RNA (tRNA) before peptide-bond formation and the A site, where decoding takes place according to the codon exposed there. In the eighties a third tRNA binding site was detected, the E site, which was specific for deacylated tRNA and turned out to be a universal feature of ribosomes. However, despite having three tRNA binding sites, only two tRNAs occupy the ribosome at a time during protein synthesis: at the A and P sites before translocation (PRE state) and at the P and E sites after translocation (POST state). The importance of having two tRNAs in the POST state has been revealed during the last 25 years, showing that the E site contributes two fundamental features: (i) the fact that incorporation of a wrong amino acid is not harmful for the cell (only 1 in about 400 misincorporations destroys the function of a protein) stems from the presence of an E-tRNA; (ii) maintenance of the reading frame is one of the most remarkable achievements of the ribosome, essential for faithful translation of the genetic information. The presence of the POST state E-tRNA prevents loss of the reading frame. Received 14 March 2006; received after revision 8 June 2006; accepted 4 August 2006  相似文献   

18.
The transmembrane electrochemical proton gradient generated by the redox systems of the respiratory chain in mitochondria and aerobic bacteria is utilized by proton translocating ATP synthases to catalyze the synthesis of ATP from ADP and Pi. The bacterial and mitochondrial H+-ATP synthases both consist of a membranous sector, F0, which forms a H+-channel, and an extramembranous sector, F1, which is responsible for catalysis. When detached from the membrane, the purified F1 sector functions mainly as an ATPase. In chloroplasts, the synthesis of ATP is also driven by a proton motive force, and the enzyme complex responsible for this synthesis is similar to the mitochondrial and bacterial ATP synthases. The synthesis of ATP by H+-ATP synthases proceeds without the formation of a phosphorylated enzyme intermediate, and involves co-operative interactions between the catalytic subunits.  相似文献   

19.
Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin’s chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin’s high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.  相似文献   

20.
Summary From the urine of a patient with proteinuria, the albumin protein component was isolated and compared with human serum albumin. By comparing the amino acid composition of the original proteins and their large cyanogen bromide fragments, peptide maps and N-terminal sequences of 33 amino acid residues, the identity of both proteins was shown.We wish to express our thanks to Mr L. Slepika and Dr A. Koent for the protein fractionation. We are indebted to Mr K. Grüner for the Edman degradation experiments, to Mrs E. Drková for amino acid analyses and Mrs A. Kulhánková for technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号