首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
有效提取特征有利于提高后续人体动作识别的准确率。针对人体动作识别时方向梯度直方图(histogram of oriented gradient,HOG)特征维数过高和相似动作不好区分的问题,提出一种基于特征优选和图像相似度的人体动作识别算法。实验对比三种降维方法主成分分析法(principal component analysis,PCA)、PCA+Pearson、PCA+Spearman处理后的动作识别率,证明PCA+Pearson相关系数的降维效果最佳。同时将全局特征八星模型与降维后的局部特征HOG特征组合在一起全面表征人体动作,并计算相邻两帧图像相似度,自适应分配一个判别周期内单帧支持向量机分类结果的统计权值,最后二次分类人体姿态识别结果。在标准数据集KTH上进行实验,该算法识别准确率为94. 5%,较其他方法有所提高,在视频人体动作识别领域有较好应用价值。  相似文献   

2.
指出了动作识别中的最大困难是难以提取有效的特征来准确描述人体的动作,动作模板是众多方法中的一种简单有效的方法,用来描述动作特征的经典动作模板是运动历史图像.由于受噪声的干扰,用运动历史图像描述复杂环境下的人体动作并不十分理想.为了得到比运动历史图像更加有效的动作模板,提出了将视频序列中的运动能量信息用一张图描述出来,称之为累积运动能量图像,提取其直方图特征来表征人体动作.经You Tube数据集上的实验表明:该累积运动能量图像的识别率比同类方法高.  相似文献   

3.
基于动作识别和步幅估计的步行者航位推算   总被引:1,自引:0,他引:1  
针对步行者的运动特点,采用和传统航位推算不同的思路,提出低成本步行者航位推算方案.通过分析安装在步行者身体上的加速度计输出采样,采用支持向量机识别步行者运动状态,并采用滑动窗长度可变的峰值捕获算法测算实时步频.为提高峰值捕获正确率,使用Daubechies 4作为基函数的小波滤波器对加速度计的原始输出进行平滑.通过实验拟合出步幅与步频的关系模型,并以此估算步行者实时步幅作为步行者实时移动距离,再结合电磁罗盘的航向角输出,完成步行者航位推算.经实地实验验证,该方案具有较好的定位效果.  相似文献   

4.
提出了一种结合词袋法的3维尺度不变特征转换(3D-SFIT)算子,并应用于人的动作识别.将运动的人从图像背景分割出来并计算特征算子,用词袋法表征视频,最后采用支持向量机(SVM)对动作进行分类.采用Weizmann动作数据库对本方法进行测试,实验结果表明:3D-SFIT算子能很好地描述视频序列的本质,比传统的描述算子更...  相似文献   

5.
无人机运动状态识别是无人机运行状态分析的基础,是实现无人机航迹预测的必要条件。对于非合作目标来说,动作捕捉系统可以有效采集其航迹数据。提出一种基于动作捕捉的无人机运动状态识别方法。首先,通过插值、重采样、滤波等方法对包含噪声的无人机航迹数据进行预处理;然后,通过特征提取与特征选择方法,针对速度、加速度、曲率、转角这4个运动参数,提取无人机运动特征;并分割无人机航迹。最后运用支持向量机的方法进行无人机运动状态识别,对速度、加速度、曲率的分类精度分别达到了95%、90%和100%。证明了本方法的可行性。  相似文献   

6.
为了推广神经网络在人体动作识别中的应用,设计了一种基于分层识别框架和增强算法的动作识别系统,该系统融合了光流直方图、有向梯度直方图、Hu的矩特征、分块剪影和自相似矩阵等多种特征.为了与反向传播网络的增强相匹配,将传统的二分类增强算法扩展到多分类版本.此外,系统采用了包含预判决和后判决的分层识别框架,前者通过分析运动显著区域的位置,把动作粗分为几个子类,后者则利用额外的特征进一步提高识别准确率.基于Weizmann和KTH数据库的实验结果表明:神经网络相对于常用的支持向量机具有明显的优越性;结合分层识别的反向传播增强算法可以极大减少运算代价与动作类间的混淆,识别准确率较高.  相似文献   

7.
考虑视频采样的变化和目标主体运动速度的不同,针对目前深度网络学习的视频序列特征单一、多种动作分类器分类置信程度不同的问题,提出了一种多时间尺度双流CNN与置信融合的视频动作识别方法.对视频序列采用两流神经网络在多个时间尺度上学习,提取不同时间跨度的视频帧之间的上下文信息特征,并采用LSTM进行多种特征的动作类别预测.然...  相似文献   

8.
针对一般基于知识迁移的方法对未知视角不可用和难以扩展新数据的问题,提出一种基于非线性模型的无监督学习方法,即基于非线性知识迁移(nonlinear knowledge shift,NKS)的串联特征学习.提取密集动作轨迹,并利用通用码书编码;提取动作捕捉数据模拟点的密集轨迹,产生一个仿真数据的大型语料库来学习NKS,其中,轨迹提取前在视角方向上投影模拟点;再从真实视频中提取轨迹,用于训练和测试表示学习过程的轨迹,利用多类支持向量机分类串联特征.在两大通用人体动作识别数据库IXMAS和3D(N-UCLA)上验证了该方法的有效性,实验结果表明,在IXMAS数据集、不同摄像机情况下,该方法的识别精度高于同类方法至少3.5%,在3D(N-NCLA)数据集、双摄像头情况下,识别精度至少提高4.4%.在大部分动作识别中也取得最佳识别率,此外,该方法的训练时间可忽略不计,有望应用于在线人体动作识别系统.  相似文献   

9.
基于SVM信息融合方法的人脸表情识别   总被引:1,自引:0,他引:1  
提出一种基于支持向量机(SVM)的信息融合方法进行人脸表情识别.该方法首先对 预处理后的人脸图像进行局部特征和整体特征的提取;然后用最小距离分类器、最近邻距离 分类器、最大相关分类器、径向基函数(RBF)神经网络分类器进行表情识别;最后构造一 个三阶的多项式支持向量机对多个分类器的输出进行决策融合以达到人脸表情识别的目的.  相似文献   

10.
针对复杂生产流通过程中,传统算法无法对因防护不当和磨损污染等原因造成的金属刀具表面二维条码缺损和磨损等失效问题进行定位和识别的缺陷,设计了一个基于多信息融合的失效条码识别系统,完成刀具产品的识别和条码信息的提取.该系统利用图像传感器和重量传感器对刀具形状、残余条码纹理和重量等特征进行量化,提取高维特征向量.通过支持向量机与证据理论相结合,实现对失效条码的分类识别.实验结果表明,该系统能够对条码存在污损的刀具进行准确、快速地分类和识别,满足实际生产中的要求.  相似文献   

11.
为了在静态图像中获取有效信息, 构建行为模型, 提出了行为覆盖区 ACA(Action Coverage Area)和行为核心 AC(Action Core)的概念, 基于 Latent SVM(Support Vector Machine)目标识别方法, 设计了一种多视角行为模型 MVAM(Multiple Viewpoint Action Model)。 建立了独立的用于行为模型训练和测试的行为数据库。 实验表明, 该表示法对静态图像中的人体行为能有效地进行分类和检测。  相似文献   

12.
改进人体行为识别传统模板匹配方法的算法,提出一种基于运动矢量分析动作识别技术,并对其识别效果进行实验验证.该技术把标准人体动作的百分比运动矢量作为模板,将待识别动作的百分比运动矢量与已知的模板进行对比,从而得到动作识别结果.该技术可以正确识别摆头、点头和摇头动作,动作重复3次的识别率可以达到95%以上.该技术进行实时动作识别具有效果好、算法简单、识别速度快、抗干扰性强等优点.  相似文献   

13.
融合人脸特征和相关向量机的多姿态人脸检测   总被引:1,自引:0,他引:1  
多姿态人脸检测是人脸检测研究领域中的难点和热点之一,针对这一实际应用中亟待解决的难题,提出融合人脸特征和相关向量机的检测算法。算法首先利用肤色特征快速排除大部分背景,在肤色区域中搜索眼睛和嘴巴区域。根据眼睛和嘴巴区域的几何特征所确定的人脸方向,分割出大致正向的人脸候选区域。最后选用分类性能比支持向量机更优的相关向量机对候选区域进行分类。对比实验表明,算法提高了多姿态人脸的检测率,对光照、表情和遮挡有较强的鲁棒性。  相似文献   

14.
基于支持向量机的步态识别新方法   总被引:4,自引:0,他引:4  
为了能更好地提取步态识别参量,克服目前常用步态识别算法的不足,提出了基于频域特征提取与支持向量机(SVM)识别的新方法.首先提取下肢关节点的两维空间运动数据并进行离散傅里叶变换,然后在频域进行窗口滤波,提取中间频段的幅值和相位,以此作为步态特征识别量输入至SVM进行分类识别.使用中国科学院自动化研究所的步态数据库,分别以SVM和人工神经网络(ANN)进行识别,其正确识别率分别为84%-93%和77%-88%,表明本文的新算法具有更好的识别性能.  相似文献   

15.
Automatic recognition of skin micro-image symptom is important in skin diagnosis and treatment. Feature selection is to improve the classification performance of skin micro-image symptom.This paper proposes a hybrid approach based on the support vector machine (SVM) technique and genetic algorithm (GA) to select an optimum feature subset from the feature group extracted from the skin micro-images. An adaptive GA is introduced for maintaining the convergence rate. With the proposed method, the average cross validation accuracy is increased from 88.25% using all features to 96.92 % using only selected features provided by a classifier for classification of 5 classes of skin symptoms. The experimental results are satisfactory.  相似文献   

16.
针对人脸图像受表情、光照、角度变化等因素影响,传统算法难以获得较理想的人脸识别结果问题,提出一种基于混合Gauss模型的鲁棒人脸识别算法.先将每副图像划分成子块,提取其方向梯度直方图特征,并加入子块相应的空间位置信息产生人脸图像的局部特征向量;再采用全部图像的局部特征向量训练混合Gauss模型生成人脸特征向量;最后采用最小二乘支持向量机建立人脸识别分类器,实现人脸匹配与识别.采用ORL,Yale和CIGIT人脸库进行仿真对比测试,仿真结果表明,该算法的人脸识别率高于其他人脸识别算法,对光照、角度、表情等有较强的鲁棒性,且可以获得更快的人脸识别速度.  相似文献   

17.
提出了一种空 时快速鲁棒特征(SURF)描述子,并且结合视频词汇概念,应用于人行为识别.这种新的描述子在行为识别应用中能很好地体现视频的时空本质,通过词袋(Bag of Words)模型来表征视频,且在表征过程使用了非硬性权重.实验以瑞典皇家理工学院的行为识别数据集作为测试对象,使用了相关领域传统的分类策略,同时引入了包含二次判断的投票系统.实验结果证明,结合特征描述子和视频词汇的行为识别框架在速度和准确率上均优于已有的一些方法,同时该分类策略在某些行为类型上优于传统的分类方法,能有效地应用于行为识别领域.  相似文献   

18.
为了提高支撑向量机(Support Vector Machine,SVM)的性能,降低时间开销;提出一种基于特征提取的SVM算法,并将其用于汽轮发电机组的故障诊断;使用KFDA(Kernel Fisher Discriminant Analyst)算法提取汽轮发电机组数据的关键特征,并使用SVM分类器对特征数据集合进行分类检测;实验结果表明:算法是可行和有效的,在分类性能和训练时间上都得到了提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号