首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 425 毫秒
1.
Segregation of homologous maternal and paternal centromeres to opposite poles during meiosis I depends on post-replicative crossing over between homologous non-sister chromatids, which creates chiasmata and therefore bivalent chromosomes. Destruction of sister chromatid cohesion along chromosome arms due to proteolytic cleavage of cohesin's Rec8 subunit by separase resolves chiasmata and thereby triggers the first meiotic division. This produces univalent chromosomes, the chromatids of which are held together by centromeric cohesin that has been protected from separase by shugoshin (Sgo1/MEI-S332) proteins. Here we show in both fission and budding yeast that Sgo1 recruits to centromeres a specific form of protein phosphatase 2A (PP2A). Its inactivation causes loss of centromeric cohesin at anaphase I and random segregation of sister centromeres at the second meiotic division. Artificial recruitment of PP2A to chromosome arms prevents Rec8 phosphorylation and hinders resolution of chiasmata. Our data are consistent with the notion that efficient cleavage of Rec8 requires phosphorylation of cohesin and that this is blocked by PP2A at meiosis I centromeres.  相似文献   

2.
3.
Brar GA  Kiburz BM  Zhang Y  Kim JE  White F  Amon A 《Nature》2006,441(7092):532-536
During meiosis, cohesins--protein complexes that hold sister chromatids together--are lost from chromosomes in a step-wise manner. Loss of cohesins from chromosome arms is necessary for homologous chromosomes to segregate during meiosis I. Retention of cohesins around centromeres until meiosis II is required for the accurate segregation of sister chromatids. Here we show that phosphorylation of the cohesin subunit Rec8 contributes to step-wise cohesin removal. Our data further implicate two other key regulators of meiotic chromosome segregation, the cohesin protector Sgo1 and meiotic recombination in bringing about the step-wise loss of cohesins and thus the establishment of the meiotic chromosome segregation pattern. Understanding the interplay between these processes should provide insight into the events underlying meiotic chromosome mis-segregation, the leading cause of miscarriages and mental retardation in humans.  相似文献   

4.
Shugoshin collaborates with protein phosphatase 2A to protect cohesin   总被引:1,自引:0,他引:1  
Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.  相似文献   

5.
6.
F Uhlmann  F Lottspeich  K Nasmyth 《Nature》1999,400(6739):37-42
Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin. Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion. Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase. In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1. Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis. A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes. The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase.  相似文献   

7.
Heterochromatin links to centromeric protection by recruiting shugoshin   总被引:1,自引:0,他引:1  
Yamagishi Y  Sakuno T  Shimura M  Watanabe Y 《Nature》2008,455(7210):251-255
The centromere of a chromosome is composed mainly of two domains, a kinetochore assembling core centromere and peri-centromeric heterochromatin regions. The crucial role of centromeric heterochromatin is still unknown, because even in simpler unicellular organisms such as the fission yeast Schizosaccharomyces pombe, the heterochromatin protein Swi6 (HP1 homologue) has several functions at centromeres, including silencing gene expression and recombination, enriching cohesin, promoting kinetochore assembly, and, ultimately, preventing erroneous microtubule attachment to the kinetochores. Here we show that the requirement of heterochromatin for mitotic chromosome segregation is largely replaced by forcibly enriching cohesin at centromeres in fission yeast. However, this enrichment of cohesin is not sufficient to replace the meiotic requirement for heterochromatin. We find that the heterochromatin protein Swi6 associates directly with meiosis-specific shugoshin Sgo1, a protector of cohesin at centromeres. A point mutation of Sgo1 (V242E), which abolishes the interaction with Swi6, impairs the centromeric localization and function of Sgo1. The forced centromeric localization of Sgo1 restores proper meiotic chromosome segregation in swi6 cells. We also show that the direct link between HP1 and shugoshin is conserved in human cells. Taken together, our findings suggest that the recruitment of shugoshin is the important primary role for centromeric heterochromatin in ensuring eukaryotic chromosome segregation.  相似文献   

8.
Kitajima TS  Kawashima SA  Watanabe Y 《Nature》2004,427(6974):510-517
Meiosis comprises a pair of specialized nuclear divisions that produce haploid germ cells. To accomplish this, sister chromatids must segregate together during the first meiotic division (meiosis I), which requires that sister chromatid cohesion persists at centromeres. The factors that protect centromeric cohesion during meiosis I have remained elusive. Here we identify Sgo1 (shugoshin), a protector of the centromeric cohesin Rec8 in fission yeast. We also identify a homologue of Sgo1 in budding yeast. We provide evidence that shugoshin is widely conserved among eukaryotes. Moreover, we identify Sgo2, a paralogue of shugoshin in fission yeast, which is required for faithful mitotic chromosome segregation. Localization of Sgo1 and Sgo2 at centromeres requires the kinase Bub1, identifying shugoshin as a crucial target for the kinetochore function of Bub1. These findings provide insights into the evolution of meiosis and kinetochore regulation during mitosis and meiosis.  相似文献   

9.
A chromatin remodelling complex that loads cohesin onto human chromosomes   总被引:20,自引:0,他引:20  
Nucleosomal DNA is arranged in a higher-order structure that presents a barrier to most cellular processes involving protein DNA interactions. The cellular machinery involved in sister chromatid cohesion, the cohesin complex, also requires access to the nucleosomal DNA to perform its function in chromosome segregation. The machineries that provide this accessibility are termed chromatin remodelling factors. Here, we report the isolation of a human ISWI (SNF2h)-containing chromatin remodelling complex that encompasses components of the cohesin and NuRD complexes. We show that the hRAD21 subunit of the cohesin complex directly interacts with the ATPase subunit SNF2h. Mapping of hRAD21, SNF2h and Mi2 binding sites by chromatin immunoprecipitation experiments reveals the specific association of these three proteins with human DNA elements containing Alu sequences. We find a correlation between modification of histone tails and association of the SNF2h/cohesin complex with chromatin. Moreover, we show that the association of the cohesin complex with chromatin can be regulated by the state of DNA methylation. Finally, we present evidence pointing to a role for the ATPase activity of SNF2h in the loading of hRAD21 on chromatin.  相似文献   

10.
Haering CH  Farcas AM  Arumugam P  Metson J  Nasmyth K 《Nature》2008,454(7202):297-301
Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin. Cohesin's Scc1, Smc1 and Smc3 subunits form a tripartite ring structure, and it has been proposed that cohesin holds sister DNA molecules together by trapping them inside its ring. To test this, we used site-specific crosslinking to create chemical connections at the three interfaces between the three constituent polypeptides of the ring, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produced dimeric DNA-cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNA molecules.  相似文献   

11.
12.
Watanabe Y  Yokobayashi S  Yamamoto M  Nurse P 《Nature》2001,409(6818):359-363
Meiosis is initiated from G1 of the cell cycle and is characterized by a pre-meiotic S phase followed by two successive nuclear divisions. The first of these, meiosis I, differs from mitosis in having a reductional pattern of chromosome segregation. Here we show that meiosis can be initiated from G2 in fission yeast cells by ectopically activating the meiosis-inducing network. The subsequent meiosis I occurs without a pre-meiotic S phase and with decreased recombination, and exhibits a mitotic pattern of equational chromosome segregation. The subsequent meiosis II results in random chromosome segregation. This behaviour is similar to that observed in cells lacking the meiotic cohesin Rec8 (refs 3, 4), which becomes associated with chromosomes at G1/S phase, including the inner centromere, a region that is probably critical for sister-centromere orientation. If the expression of Rec8 is delayed to S phase/G2, then the centromeres behave equationally. We propose that the presence of Rec8 in chromatin is required at the pre-meiotic S phase to construct centromeres that behave reductionally and chromosome arms capable of a high level of recombination, and that this explains why meiosis is initiated from G1 of the cell cycle.  相似文献   

13.
Wagner CR  Kuervers L  Baillie DL  Yanowitz JL 《Nature》2010,467(7317):839-843
Meiotic crossover (CO) recombination establishes physical linkages between homologous chromosomes that are required for their proper segregation into developing gametes, and promotes genetic diversity by shuffling genetic material between parental chromosomes. COs require the formation of double strand breaks (DSBs) to create the substrate for strand exchange. DSBs occur in small intervals called hotspots and significant variation in hotspot usage exists between and among individuals. This variation is thought to reflect differences in sequence identity and chromatin structure, DNA topology and/ or chromosome domain organization. Chromosomes show different frequencies of nondisjunction (NDJ), reflecting inherent differences in meiotic crossover control, yet the underlying basis of these differences remains elusive. Here we show that a novel chromatin factor, X non-disjunction factor 1 (xnd-1), is responsible for the global distribution of COs in C. elegans. xnd-1 is also required for formation of double-strand breaks (DSBs) on the X, but surprisingly XND-1 protein is autosomally enriched. We show that xnd-1 functions independently of genes required for X chromosome-specific gene silencing, revealing a novel pathway that distinguishes the X from autosomes in the germ line, and further show that xnd-1 exerts its effects on COs, at least in part, by modulating levels of H2A lysine 5 acetylation.  相似文献   

14.
甘蓝-白芥单体异附加系自交后代的GISH分析   总被引:3,自引:0,他引:3  
将甘蓝-白芥单体异附加系自交,获得了其自交后代.利用基因组原位杂交(genomicin situhy-bridization,GISH),结合双色荧光原位杂交(dual-colour fluorescencein situhybridization,dcFISH)技术,从这些自交后代中鉴定出了纯合的甘蓝-白芥二体异附加系植株.GISH分析结果表明,甘蓝-白芥二体异附加系有丝分裂中期具有18条甘蓝染色体及2条白芥染色体,减数分裂中期I表现为9个C染色体二价体及1个S染色体二价体,减数分裂后期I会出现落后的1对S染色体,有时落后的1对S染色体形成染色体桥.  相似文献   

15.
Processing of primary microRNAs by the Microprocessor complex   总被引:4,自引:0,他引:4  
Denli AM  Tops BB  Plasterk RH  Ketting RF  Hannon GJ 《Nature》2004,432(7014):231-235
  相似文献   

16.
17.
Rao H  Uhlmann F  Nasmyth K  Varshavsky A 《Nature》2001,410(6831):955-959
Cohesion between sister chromatids is established during DNA replication and depends on a protein complex called cohesin. At the metaphase-anaphase transition in the yeast Saccharomyces cerevisiae, the ESP1-encoded protease separin cleaves SCC1, a subunit of cohesin with a relative molecular mass of 63,000 (Mr 63K). The resulting 33K carboxy-terminal fragment of SCC1 bears an amino-terminal arginine-a destabilizing residue in the N-end rule. Here we show that the SCC1 fragment is short-lived (t1/2 approximately 2 min), being degraded by the ubiquitin/proteasome-dependent N-end rule pathway. Overexpression of a long-lived derivative of the SCC1 fragment is lethal. In ubr1Delta cells, which lack the N-end rule pathway, we found a highly increased frequency of chromosome loss. The bulk of increased chromosome loss in ubr1Delta cells is caused by metabolic stabilization of the ESP1-produced SCC1 fragment. This fragment is the first physiological substrate of the N-end rule pathway that is targeted through its N-terminal residue. A number of yeast proteins bear putative cleavage sites for the ESP1 separin, suggesting other physiological substrates and functions of the N-end rule pathway.  相似文献   

18.
Chu DS  Liu H  Nix P  Wu TF  Ralston EJ  Yates JR  Meyer BJ 《Nature》2006,443(7107):101-105
Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.  相似文献   

19.
Cohesin Rec8 is required for reductional chromosome segregation at meiosis.   总被引:41,自引:0,他引:41  
Y Watanabe  P Nurse 《Nature》1999,400(6743):461-464
When cells exit from mitotic cell division, their sister chromatids lose cohesion and separate to opposite poles of the dividing cell, resulting in equational chromosome segregation. In contrast, the reductional segregation of the first stage of meiotic cell division (meiosis I) requires that sister chromatids remain associated through their centromeres and move together to the same pole. Centromeric cohesion is lost as cells exit from meiosis II and sister chromatids can then separate. The fission yeast cohesin protein Rec8 is specific to and required for meiosis. Here we show that Rec8 appears in the centromeres and adjacent chromosome arms during the pre-meiotic S phase. Centromeric Rec8 persists throughout meiosis I and disappears at anaphase of meiosis II. When the rec8 gene is deleted, sister chromatids separate at meiosis I, resulting in equational rather than reductional chromosome segregation. We propose that the persistence of Rec8 at centromeres during meiosis I maintains sister-chromatid cohesion, and that its presence in the centromere-adjacent regions orients the kinetochores so that sister chromatids move to the same pole. This results in the reductional pattern of chromosome segregation necessary to reduce a diploid zygote to haploid gametes.  相似文献   

20.
Neale MJ  Keeney S 《Nature》2006,442(7099):153-158
During meiosis, accurate separation of maternal and paternal chromosomes requires that they first be connected to one another through homologous recombination. Meiotic recombination has many intriguing but poorly understood features that distinguish it from recombination in mitotically dividing cells, and several of these features depend on the meiosis-specific DNA strand exchange protein Dmc1 (disrupted meiotic cDNA1). Many questions about this protein have arisen since its discovery more than a decade ago, but recent genetic and biochemical breakthroughs promise to shed light on the unique behaviours and functions of this central player in the remarkable chromosome dynamics of meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号