首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The worksheets that presumably contained Newton's early development of the fundamental concepts in his Principia have been lost. A plausible reconstruction of this development is presented based on Newton's exchange of letters with Robert Hooke in 1679, with Edmund Halley in 1686, and on some clues in the diagram associated with Proposition 1 in Book 1 of the Principia that have been ignored in the past. A graphical construction associated with this proposition leads to a rapidly convergent method to obtain orbits for central forces, which elucidates how Newton may have have been led to formulate some of his most fundamental propositions in the Principia.  相似文献   

2.
At the end of the 19th century Oliver Heaviside developed a formal calculus of differential operators in order to solve various physical problems. The pure mathematicians of his time would not deal with this unrigorous theory, but in the 20th century several attempts were made to rigorise Heaviside's operational calculus. These attempts can be grouped in two classes. The one leading to an explanation of the operational calculus in terms of integral transformations (Bromwich, Carson, Vander Pol, Doetsch) and the other leading to an abstract algebraic formulation (Lévy, Mikusiski). Also Schwartz's creation of the theory of distributions was very much inspired by problems in the operational calculus.  相似文献   

3.
Alexis Fontaine des Bertins (1704–1771) was the first French mathematician to introduce what we would now regard as results in the calculus of several variables. One example is Fontaine's theorem nF = (?F/?x)x + (?F/?y)y of 1737 for homogeneous expressions F of degree n in x and y. Many years later Fontaine indicated this particular result to have been ‘a continuation of the method of solution’ introduced by him in 1734 to solve the problem of the tautochrones. It is tempting to disregard this announcement, since the method applied to the tautochrones was a method of variations and not manifestly an exercise in the calculus of several variables. Do we have just another case of a mathematician's confusion about the origins of his earlier work? In this paper I describe Fontaine's possible intentions in his remarks.  相似文献   

4.
It is shown in this article that the two sides of an equation in the medieval Arabic algebra are aggregations of the algebraic “numbers” (powers) with no operations present. Unlike an expression such as our 3x + 4, the Arabic polynomial “three things and four dirhams” is merely a collection of seven objects of two different types. Ideally, the two sides of an equation were polynomials so the Arabic algebraists preferred to work out all operations of the enunciation to a problem before stating an equation. Some difficult problems which involve square roots and divisions cannot be handled nicely by this basic method, so we do find square roots of polynomials and expressions of the form “A divided by B” in some equations. But rather than initiate a reconsideration of the notion of equation, these developments were used only for particularly complex problems. Also, the algebraic notation practiced in the Maghreb in the later middle ages was developed with the “aggregations” interpretation in mind, so it had no noticeable impact on the concept of polynomial. Arabic algebraists continued to solve problems by working operations before setting up an equation to the end of the medieval period. I thank Mahdi Abdeljaouad, who provided comments on an earlier version of this paper, and Haitham Alkhateeb, for his help with some of the translations. Notes on references: When page numbers are separated by a “ / ”, the first number is to the Arabic text, and the second to the translation. Also, a semicolon separates page number from line number. Example: [Al-Khwārizmī, 1831, 31;6/43] refers to page 31 line 6 of the Arabic text, and page 43 of the translation.  相似文献   

5.
6.
On December 13, 1679Newton sent a letter toHooke on orbital motion for central forces, which contains a drawing showing an orbit for a constant value of the force. This letter is of great importance, because it reveals the state ofNewton's development of dynamics at that time. Since the first publication of this letter in 1929,Newton's method of constructing this orbit has remained a puzzle particularly because he apparently made a considerable error in the angle between successive apogees of this orbit. In fact, it is shown here thatNewton's implicitcomputation of this orbit is quite good, and that the error in the angle is due mainly toan error of drawing in joining two segments of the oribit, whichNewton related by areflection symmetry. In addition, in the letterNewton describes quite correctly the geometrical nature of orbits under the action of central forces (accelerations) which increase with decreasing distance from the center. An iterative computational method to evaluate orbits for central forces is described, which is based onNewton's mathematical development of the concept of curvature started in 1664. This method accounts very well for the orbit obtained byNewton for a constant central force, and it gives convergent results even for forces which diverge at the center, which are discussed correctly inNewton's letterwithout usingKepler's law of areas.Newton found the relation of this law to general central forces only after his correspondence withHooke. The curvature method leads to an equation of motion whichNewton could have solvedanalytically to find that motion on a conic section with a radial force directed towards a focus implies an inverse square force, and that motion on a logarithmic spiral implies an inverse cube force.  相似文献   

7.
In Proposition 10, Book 2 of the Principia, Newton applied his geometrical calculus and power series expansion to calculate motion in a resistive medium under the action of gravity. In the first edition of the Principia, however, he made an error in his treatment which lead to a faulty solution that was noticed by Johann Bernoulli and communicated to him while the second edition was already at the printer. This episode has been discussed in the past, and the source of Newton’s initial error, which Bernoulli was unable to find, has been clarified by Lagrange and is reviewed here. But there are also problems in Newton’s corrected version in the second edition of the Principia that have been ignored in the past, which are discussed in detail here.  相似文献   

8.
9.
I distinguish between two ways in which Kuhn employs the concept of incommensurability based on for whom it presents a problem. First, I argue that Kuhn’s early work focuses on the comparison and underdetermination problems scientists encounter during revolutionary periods (actors’ incommensurability) whilst his later work focuses on the translation and interpretation problems analysts face when they engage in the representation of science from earlier periods (analysts’ incommensurability). Secondly, I offer a new interpretation of actors’ incommensurability. I challenge Kuhn’s account of incommensurability which is based on the compartmentalisation of the problems of both underdetermination and non-additivity to revolutionary periods. Through employing a finitist perspective, I demonstrate that in principle these are also problems scientists face during normal science. I argue that the reason why in certain circumstances scientists have little difficulty in concurring over their judgements of scientific findings and claims while in others they disagree needs to be explained sociologically rather than by reference to underdetermination or non-additivity. Thirdly, I claim that disagreements between scientists should not be couched in terms of translation or linguistic problems (aspects of analysts’ incommensurability), but should be understood as arising out of scientists’ differing judgments about how to take scientific inquiry further.  相似文献   

10.
The aim of this paper is to discuss Maimon's criticism of Kant's doctrine of mathematical cognition. In particular, we will focus on the consequences of this criticism for the problem of the possibility of metaphysics as a science. Maimon criticizes Kant's explanation of the synthetic a priori character of mathematics and develops a philosophical interpretation of differential calculus according to which mathematics and metaphysics become deeply interwoven. Maimon establishes a parallelism between two relationships: on the one hand, the mathematical relationship between the integral and the differential and on the other, the metaphysical relationship between the sensible and the supersensible. Such a parallelism will be the clue to the Maimonian solution to the Kantian problem of the possibility of metaphysics as a science.  相似文献   

11.
We outline a framework for analyzing episodes from the history of science in which the application of mathematics plays a constitutive role in the conceptual development of empirical sciences. Our starting point is the inferential conception of the application of mathematics, recently advanced by Bueno and Colyvan (2011). We identify and discuss some systematic problems of this approach. We propose refinements of the inferential conception based on theoretical considerations and on the basis of a historical case study. We demonstrate the usefulness of the refined, dynamical inferential conception using the well-researched example of the genesis of general relativity. Specifically, we look at the collaboration of the physicist Einstein and the mathematician Grossmann in the years 1912–1913, which resulted in the jointly published “Outline of a Generalized Theory of Relativity and a Theory of Gravitation,” a precursor theory of the final theory of general relativity. In this episode, independently developed mathematical theories, the theory of differential invariants and the absolute differential calculus, were applied in the process of finding a relativistic theory of gravitation. The dynamical inferential conception not only provides a natural framework to describe and analyze this episode, but it also generates new questions and insights. We comment on the mathematical tradition on which Grossmann drew, and on his own contributions to mathematical theorizing. The dynamical inferential conception allows us to identify both the role of heuristics and of mathematical resources as well as the systematic role of problems and mistakes in the reconstruction of episodes of conceptual innovation and theory change.  相似文献   

12.
Diophantos' solutions to the problems of Arithmetica have been the object of extensive reading and interpretation in modern times, especially from the point of view of identifying ``hidden steps' or ``general methods'. In this paper, after examining the relevance of various interpretations given for the famous problem II 8 in the context of modern algebra or geometry, we focus on a close reading of the ancient text of some problems of Arithmetica in order to investigate Diophantos' solving practices. This inquiry reveals certain pointers, which enable us to create a framework for defining the generality of Diophantos' methods. An erratum to this article can be found at  相似文献   

13.
14.
15.
In this paper I examine the foundations of Laplace’s famous statement of determinism in 1814, and argue that rather than derived from his mechanics, this statement is based on general philosophical principles, namely the principle of sufficient reason and the law of continuity. It is usually supposed that Laplace’s statement is based on the fact that each system in classical mechanics has an equation of motion which has a unique solution. But Laplace never proved this result, and in fact he could not have proven it, since it depends on a theorem about uniqueness of solutions to differential equations that was only developed later on. I show that the idea that is at the basis of Laplace’s determinism was in fact widespread in enlightenment France, and is ultimately based on a re-interpretation of Leibnizian metaphysics, specifically the principle of sufficient reason and the law of continuity. Since the law of continuity also lies at the basis of the application of differential calculus in physics, one can say that Laplace’s determinism and the idea that systems in physics can be described by differential equations with unique solutions have a common foundation.  相似文献   

16.
Translation initiation is a critical step in protein synthesis. Previously, two major mechanisms of initiation were considered as essential: prokaryotic, based on SD interaction; and eukaryotic, requiring cap structure and ribosomal scanning. Although discovered decades ago, cap-independent translation has recently been acknowledged as a widely spread mechanism in viruses, which may take place in some cellular mRNA translations. Moreover, it has become evident that translation can be initiated on the leaderless mRNA in all three domains of life. New findings demonstrate that other distinguishable types of initiation exist, including SD-independent in Bacteria and Archaea, and various modifications of 5′ end-dependent and internal initiation mechanisms in Eukarya. Since translation initiation has developed through the loss, acquisition, and modification of functional elements, all of which have been elevated by competition with viral translation in a large number of organisms of different complexity, more variation in initiation mechanisms can be anticipated.  相似文献   

17.
Many have thought that symmetries of a Lagrangian explain the standard laws of energy, momentum, and angular momentum conservation in a rather straightforward way. In this paper, I argue that the explanation of conservation laws via symmetries of Lagrangians involves complications that have not been adequately noted in the philosophical literature and some of the physics literature on the subject. In fact, such complications show that the principles that are commonly appealed to to drive explanations of conservation laws are not generally correct without caveats. I hope here to give a clearer picture of the relationship between symmetries and conservation laws in Lagrangian mechanics via an examination of the bearing that results in the inverse problem in the calculus of variations have on this topic.  相似文献   

18.
19.
Screening for differentially expressed genes is a straightforward approach to study the molecular basis for changes in gene expression. Differential display analysis has been used by investigators in diverse fields of research since it was developed. Differential display has also been the approach of choice to investigate changes in gene expression in response to various biological challenges in invertebrates. We review the application of differential display analysis of gene expression in invertebrates, and provide a specific example using this technique for novel gene discovery in the nematode Caenorhabditis elegans.  相似文献   

20.
A letter written by Christiaan Huygens to David Gregory (19 January 1694) is published here for the first time. After an introduction about the contacts between the two correspondents, an annotated English translation of the letter is given. The letter forms part of the wider correspondence about the ‘new calculus’, in which L'Hospital and Leibniz also participated, and gives some new evidence about Huygens's ambivalent attitude towards the new developments. Therefore, two mathematical passages in the letter are discussed separately. An appendix contains the original Latin text.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号