共查询到19条相似文献,搜索用时 125 毫秒
1.
《云南民族大学学报(自然科学版)》2016,(6)
利用时空兴趣点间的位置及局部特征相似度信息,提出一种局部邻域特征以描述局部数据结构,然后引入核主角度及Grassmann流形距离以度量2个邻域特征距离,通过构造随机流形森林学习数据样本在Grassman流形上的类条件概率密度函数,最后使用多核学习算法实现对随机流形树的剪辑及动作分类.在KTH及UCF-CIL动作数据库的实验证明:所提动作表示方法能有效描述人体运动信息,且该动作识别算法的识别率优于近年提出的典型动作识别系统. 相似文献
2.
数据规模的不断增加,使得为数据库中全部样本做标记变得尤为困难,数据集也因此呈现出了明显的弱标记性.为此,针对大规模少数标记数据集的特征选择问题,基于经典的Relief-F算法,通过综合考虑有标记样本与无标记样本对数据样本近邻的影响,重新定义样本近邻的搜索策略,提出了一种面向符号数据的半监督特征选择算法.为进一步分析新算法的有效性,仿真实验中选取了5组UCI数据集,并引入机器学习中3个常用分类器对新算法和对比算法的特征选择结果的分类性能作了分析和比较,实验结果很好地验证了本文中提出的新算法的有效性和可行性. 相似文献
3.
本文主要研究自监督学习方法在视频目标分割中的应用。首先通过挖掘大规模无标注视频数据中的时间-空间关系,让神经网络作为特征编码器学习视频帧之间的相似性和连续性;然后通过记忆力机制训练网络,使其对当前帧和多个参考帧之间的关系进行建模;利用特征编码器学习到的特征对视频帧中的分割目标进行重建,进行下游的视频目标分割任务;最后,利用在线自适应模块对视频分割结果的错误进行修正。实验结果表明,本文的自监督方法在视频分割任务上的表现可以更加接近有监督方法的分割结果,采用记忆力机制和在线自适应模块可以大大提高视频目标分割的准确性。另外本文探究了数据有效性,当采用少量数据进行网络的自监督训练时,模型仍能取得较好的效果,意味着这个任务本身不需要大规模数据集中富含的复杂语义信息进行建模。 相似文献
4.
为了提高人脸识别算法的识别率,提出了一种基于局部奇异值分解(Local Singular Value Decomposition,LSVD)和监督拉普拉斯特征映射(Supervised Laplacian Eigenmap,SLE)的人脸图像识别方法。由于奇异值向量具有良好的稳定性、转置不变性等特点,首先利用局部奇异值分解方法从人脸图像中提取特征向量;然后采用监督拉普拉斯特征映射算法对已获取的人脸特征进行维数约简。在Yale和ORL人脸库上的实验结果表明,该算法能有效地提高人脸识别的性能。 相似文献
5.
针对毫米波高分辨率雷达一维距离像目标识别的多类分类问题.基于局部线性嵌入(Locally Linear Embedding,LLE)算法思想,考虑样本与其所在低维流形之间的关系,提出一种多类分类算法.该算法先确定样本所在低维流形的结构,然后通过比较未知样本与各类已知样本流形间的关系来分类.将其应用于毫米波高分辨率雷达一维距离像目标识别,实验结果表明,该算法能够有效地进行分类。性能优于其他常用多类分类算法.且对输入参数不敏感. 相似文献
6.
提出一种监督学习的核拉普拉斯特征映射方法(supervised kernel Laplacian eigenmap,SKLE),通过非线性核映射将样本数据投影到高维核特征空间,然后将流形结构和样本类别信息进行有效的结合后,提取嵌入在高维数据中的低维流形特征用于分类.实验表明,该方法对新样本具有泛化性,并且能有效提高分类的效能. 相似文献
7.
针对传统被动毫米波金属目标识别方法中特征提取、选择的缺点,采用Laplacian特征映射流形学习算法发现了金属目标回波信号短 相似文献
8.
提出了一种基于流形半监督学习的移动节点定位算法.该算法利用基于流形学习的半监督方法,通过一定量的有标签样本和无标签样本,获取隐含在节点接收信号强度信息中的流形结构,直接建立节点物理位置与接收信号强度之间的映射关系.算法不需要使用现有的理论或经验信号传播模型,避免了模型不准确带来的定位误差,而且允许网络中存在大量无标签样本,降低了数据采集难度,提高了算法实用性.冶金工业现场的实际应用结果表明,相对RADAR算法,本文算法具有较高的定位精度. 相似文献
9.
维数减少是在损失较少特征信息的条件下处理高维图像数据的关键技术,已成为高维数据处理中的热点问题.样本的类内和类间散度判别信息被用于判断当前样本对属于相同类还是不同类,同时考虑未标签样本对算法性能的影响,提出了一种判别型半监督非线性维数减少算法(discriminativesemi-supervised nonlinear dimensionality reduction,DSSNDR),可有效避免奇异性.DSSNDR采用高斯核和多项式核组合得到的混合核,将原始数据以一系列"有用的"特征形式投影到一个较低维的嵌入空间,便于分类,同时能够保持已标签和未标签样本的内部特征,可有效执行半监督学习.引入样本数据的子模式,将DSSNDR推广到子模式特征空间下的非线性方法,简称Sp-DSSNDR,进一步增强了DSSNDR的学习能力,提高分类精度.多个典型数据集上的分类和可视化实验表明,不同类的样本数据的投影在DSSNDR和Sp-DSSNDR构造的特征空间中存在较少的混叠现象,具有更好的可分离性.当维数被减少到较低水平时,本文算法几乎总是取得最好的结果,甚至超过了经典的主成分分析(PCA),核主成分分析(KPCA)和核Fis... 相似文献
10.
针对目前运动目标分割算法在复杂场景中适应性较差,时间复杂度较高等缺陷,提出一种新的运动目标分割算法,该算法通过自适应流形去噪实现刚性和非刚性对象的运动分割.首先,引入一种自适应核空间,如果两个特征轨迹属于同一刚性对象,则将其映射到相同点上;然后,采用一种基于自适应内核的嵌入式流形去噪算法,分割出刚性和非刚性对象的运动;最后,在多个数据集上与几种传统算法进行对比实验.实验结果表明,该算法在不同场景中均能取得更好的分割与跟踪效果. 相似文献
11.
姜明新 《大连理工大学学报》2013,53(5):755-759
在线目标跟踪是计算机视觉领域的一个具有挑战性的问题.提出了一种基于特征分组的在线目标跟踪算法.首先,利用像素点在多帧的方差对模板库中的目标模板进行特征分组.然后,利用主要特征图像和次要特征图像学习投影矩阵P,对样本进行投影.最后,利用最小误差法得出当前帧的跟踪结果.与其他典型算法相比,该算法对目标的异常变化具有很强的鲁棒性. 相似文献
12.
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性. 相似文献
13.
研究了基于偶对约束的半监督模糊聚类,将马氏距离引入到半监督模糊聚类SCAPC(semi-supervised fuzzy clustering algorithm with pairwise constraints)中,获得了一种新的半监督模糊聚类目标函数,通过求解优化问题,提出了一种基于偶对约束和马氏距离的半监督模糊聚类算法M-SCAPC(Modified-SCAPC).针对选择的标准数据集和人工数据集,对提出的算法M-SCAPC进行了实验研究,并与FCM(fuzzy C-means)、AFCC(active fuzzy constrained clustering)和SCAPC算法的聚类性能进行了比较,表明了提出的算法M-SCAPC在收敛速度和正确率方面的有效性. 相似文献
14.
一种改进时空域联合的视频对象分割算法 总被引:1,自引:0,他引:1
针对移动缓慢的视频对象,提出一种改进时空域联合的视频对象分割算法。时域上通过改进高阶统计算法,利用累积帧差的递归高阶统计算法检测出视频序列中视频对象运动区域。空域上利用Canny算子获得较精确的单帧目标边缘,进行了时域和空域的融合,得到精确运动对象模板后提取运动对象。实验结果表明,该算法与传统递归高阶统计算法相比能精确地对移动缓慢的视频对象进行提取,有一定的理论意义和适用性。 相似文献
15.
提出了一种改进的基于视频对泉的纹理编码算法.该算法在部分等级树集分割算法的基础上,充分利用视频对象的形状信息,在构建不重要集合列表时,仅仅对对象内部的小波变换系数进行处理,对对象外部的小波变换系数不作处理.通过这种改进,有效地去除了冗余的元素,使得在具有相同压缩比的条件下,该算法恢复图像的质量有了明显提高.仿真实验结果验证了该算法的有效性. 相似文献
16.
针对传统Mean-shift算法仅利用颜色特征,当场景中合有目标颜色相近的物体时,易发生误跟踪,且在目标被遮挡的情况下,无法进行有效的跟踪,提出一种融合目标纹理特征的抗遮挡跟踪算法.同时实时更新模板,并通过Kalman滤波估计目标的状态,在目标被遮挡的情况下进行估计预测,提出一种遮挡因子作为目标遮挡的判据,严重遮挡时,... 相似文献
17.
论述了CAD/CAPP集成系统的特征映射技术,分析了从设计域到制造域的信息转换技术,通过特征设计在产品设计过程中对产品添加相应的非几何特征并在产品制造过程中进行特征识别.并应用于以液压集成块为实例的CAD/CAPP集成设计系统. 相似文献
18.
针对多尺度目标检测中特征图特征混淆和特征丰富程度不足的问题,提出一种基于多尺度特征选择与融合的目标检测算法。设计了一个特征选择模块来分离出不相关的特征,并结合特征金字塔网络形成特征选择网络结构,降低特征图中不同尺度目标的局部特征对当前尺度特征的干扰;提出一种浅层特征融合方法,将浅层特征逐级融合到较深层级特征中,解决特征图的特征不够丰富问题。结合特征选择架构和浅层特征融合架构,在PASCAL-VOC2007数据集上进行测试,结果mAP达到了80.1%。相较于基础的单阶段目标检测(single shot detection, SSD),所提算法的网络性能可提高2.9%,且在一些小目标和遮挡目标的检测效果上有明显的提升。通过对比和消融实验,证明了所提方法的有效性。 相似文献
19.
移动主体获得准确的定位信息是构建稳定的混合现实(mixed reality,MR)系统的关键,然而MR中的前景对象对传统定位算法的精度影响较大.现阶段基于深度学习的定位算法可以通过识别前景对象来提升精度,但深度学习模型耗时过高,导致算法实时性下降.针对该问题,提出了一种MR中融合语义特征传播模型的前景对象感知定位算法.该算法依托语义分割网络与一种快速旋转的二进制独立稳定描述子特征(oriented fast and rotated binary robust independent elementary feature,ORB)提取算法构建了语义特征传播模型,实现高速语义特征提取;融合该模型和几何特征检测方法实现算法中的前景对象感知层,并依赖该感知层剔除MR中前景对象的特征点,构建了背景特征点集,实现高精度、高实时性的定位.实验结果表明:在慕尼黑工业大学(Technical University of Munich,TUM)公共数据集的高动态前景对象场景中,相比动态语义视觉同步定位与建图(dynamic semantic visual simultaneous localization... 相似文献