首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
带时间窗车辆路径问题的混合粒子群算法   总被引:7,自引:1,他引:7  
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法.  相似文献   

2.
为解决有时间窗的车辆路径问题,提出了一种基于进化规划和最大一最小蚁群算法相融合的混合蚁群算法,并与最大一最小蚁群算法作了比较。实验结果表明,混合蚁群算法可以、快速有效求得带时间窗车辆路径问题的优化解,是求解带时间窗车辆路径问题的一个较好方案。  相似文献   

3.
基于集合的粒子群优化算法(set-based particle swarm optimization,S-PSO) 主要用于解决离散域的组合优化问题。但S-PSO只考虑了当前粒子的最优对速度更新的影响,易陷入局部最优解。提出ES-PSO (enhanced S-PSO)算法,重新设计速度更新策略。在速度更新策略中加入了全局最优和邻域最优的影响,同时,修改权重系数,使粒子在更新时优先考虑服务时间较早的粒子,更加合理地安排了节点的服务顺序。使用ES-PSO算法求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW),提出了ES-PSO-VRPTW算法。实验结果表明,基于Solomon数据集,ES-PSO-VRPTW算法在最优路径数目(number of vehicle-route,NV)和总里程(total distance,TD)上的表现比S-PSO-VRPTW更加优越。将ES-PSO-VRPTW用于求解带时间窗的垃圾回收车辆运输问题,得到的路径数目NV和总里程TD相对于S-PSO-VRPTW以及传统的遗传算法(genetic algorithm,GA)和蚁群算法(ant colony optimization,ACO)均有大幅度降低。  相似文献   

4.
针对微粒群优化算法容易陷入局部极值的缺陷,提出多相粒子群优化算法(Multi-pha-ses Particle Swarm Optimization,MPSO).建立了带软时间窗车辆调度问题数学模型,并将该方法运用于带软时间窗车辆调度路径优化.根据多相粒子群并行搜索的思想,给出MPSO算法在带软时间窗物流配送车辆调度路径优化的实现流程.仿真结果表明:多相粒子群算法可以快速、有效地求得车辆路径问题的优化解,是一种求解带软时间窗车辆路径问题的较好方案.  相似文献   

5.
VRP问题影响着车辆配送过程中的效率与经济效益,在现实生活中有着重要的现实意义;文章首先建立了一个带有时间窗的VRP数学模型,并针对VRP问题本身的特点,对蚁群算法中的伪随机概率公式等相关参数进行改进,最后将改进的蚁群算法应用于VRP问题的求解中;通过在matlab上进行的仿真试验,表明了此算法能够有效地改善基本蚁群算法中的收敛速度慢、易于陷入局部最优解等缺陷,并能应用于大规模的车辆路径寻优问题中.  相似文献   

6.
基于布谷鸟搜索算法和单亲遗传算法,设计了一种求解带时间窗车辆路径问题的混合智能算法.该算法首先对客户位置进行聚类分析,然后再进行各区域的路径优化.混合智能算法不仅改进了布谷鸟搜索算法中当鸟卵被鸟窝主人发现后需要随机改变整个鸟窝位置的操作,同时引入的单亲遗传算法加快了最优配送路线的搜索速度.分析和比较了混合智能算法与布谷鸟搜索算法的计算复杂度.最后采用国际通用标准测试集Benchmark Problems进行测试.结果显示,混合智能算法是求解带时间窗车辆路径问题的一种有效算法.  相似文献   

7.
研究了单纯形蚁群算法解决带时间窗约束条件的车辆路径问题,旨在突出研讨在运输中不仅距离最短,而且使应用的时间尽可能的少.首先建立时间、距离对搜索路径的影响函数,然后用单纯形蚁群算法解出最优路径.简单介绍了运输的现状,提出了物流双向运输的数学模型及单纯形蚁群算法,得出了物流运输最经济的合理路线结论.  相似文献   

8.
车辆路径问题作为组合优化中的一类典型问题,其模型、算法及应用被人们广泛关注和研究.在建立双目标带时间窗的动态车辆路径问题数学模型的基础上,设计了一种求解该问题的改进蚁群算法.该算法首先对所有顾客进行区域划分;其次通过在传统蚁群算法中引入交通拥堵因子,提高了计算效率;再将挥发因子取为服从(0,1)上均匀分布的随机变量,使算法能更稳定地收敛到全局最优解.最后的数值实例验证了所建数学模型和改进蚁群算法的有效性和优越性.  相似文献   

9.
将局部版粒子群算法应用于非满载车辆路径问题,设计了一种实数编码方案,线性调整惯性权值,改进粒子更新公式,建立了解决该问题的粒子群算法。用该算法求解了两个车辆路径问题的算例,并与遗传算法和标准粒子群算法进行了比较。结果表明:该算法提高了搜索最优路径的成功率,能更有效地求解非满载车辆路径问题。  相似文献   

10.
蚁群算法是近年来新出现的一种随机型搜索寻优算法。自从在旅行商等著名问题中得到富有成效的应用之后,已引起人们越来越多的关注和重视。将这种新型的生物优化思想扩展到物流管理中的带时间窗车辆路径问题,设计了一种动态蚁群算法,从数值计算上探索了这种新型蚁群算法的优化能力,获得了满意的效果。  相似文献   

11.
有时间窗的车辆路径问题及改进禁忌搜索算法   总被引:2,自引:0,他引:2  
基于改进的禁忌搜索算法求解有时间窗的车辆路径问题,建立了该问题的通用数学模型.改进算法中,在随机构造的多个可行解中挑选较好的解作为初始解,采用2-opt方法生成邻域,并构造了动态禁忌表,使禁忌表的大小和结构随搜索过程发生改变,提高了整体寻优能力.仿真实验证明了算法的可行性、有效性和优越性.  相似文献   

12.
The vehicle routing problem with time windows (VRPTW) involves assigning a fleet of limited capacity vehicles to serve a set of customers without violating the capacity and time constraints. This paper presents a multi-agent model system for the VRPTW based on the internal behavior of agents and coordination among the agents. The system presents a formal view of coordination using the traditional contract-net protocol (CNP) that relies on the basic loop of agent behavior for order receiving, order announcem...  相似文献   

13.
车辆路径规划是物流配送导航系统中的关键环节,是实现物流配送路径引导的前提条件和车辆导航的技术保障.为解决物流配送车辆导航中的路径规划问题,文中建立了物流配送车辆导航路径规划(VND)遍历模型,设计了求解该模型的改进型粒子群算法,并对初始种群的产生方法及种群的进化策略进行改进,使原本不能直接用于求解VND模型的基本粒子群...  相似文献   

14.
提出一种改进的粒子群算法(EDAPSO).这种改进算法结合分布估计算法的探索能力和粒子群算法的开发能力.首先利用EDAPSO算法解决无约束的问题,并且比较EDAPSO算法与其他三种经典的粒子群算法的结果.无约束问题的实验结果表明:EDAPSO算法可以找到更好的解,并且稳定性更高.然后EDAPSO算法被用来解决含有13个单元的电力系统的负荷经济分配问题.实验结果表明:EDAPSO算法所获得的解比近期文献所报道的解好.  相似文献   

15.
粒子群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用,但基本粒子群算法在计算过程中易出现过早收敛现象.为此提出了一种改进的粒子群算法,利用差异演化的思想,当陷入局部极小点时,通过一定的策略迫使粒子群摆脱局部极小点.对经典函数的测试计算,验证了方法的正确性和有效性.  相似文献   

16.
一种改进的粒子群优化算法   总被引:2,自引:0,他引:2  
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法.该算法将模拟退火算法的"上山性"引入粒子群算法中,同时为了增加种群的多样性,将交叉和变异算子也结合进去,形成了一种新的改进粒子群算法.比较了高斯变异和柯西变异这两种变异算子对改进算法的影响.改进算法对典型函数的优化计算结果表明,与基本粒子群算法相比,改进算法能够更加快速有效的收敛到全局最优解,而且采用柯西变异算子的改进算法的效果比采用高斯变异算子的效果要好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号