共查询到20条相似文献,搜索用时 15 毫秒
1.
Winston R. Moore 《Journal of forecasting》2007,26(6):445-455
The 1990s were a turbulent time for Latin American and Caribbean countries. During this period, the region suffered from no less than 16 banking crises. One the most important determinants of the severity of banking a crisis is commercial bank liquidity. Banking systems that are relatively liquid are better able to deal with the large deposit withdrawals which tend to accompany bank runs. This study provides an assessment of whether behavioural models, linear time series or nonlinear time series models are better able to account for liquidity dynamics during a crisis. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
This paper applies a triple‐choice ordered probit model, corrected for nonstationarity to forecast monetary decisions of the Reserve Bank of Australia. The forecast models incorporate a mix of monthly and quarterly macroeconomic time series. Forecast combination is used as an alternative to one multivariate model to improve accuracy of out‐of‐sample forecasts. This accuracy is evaluated with scoring functions, which are also used to construct adaptive weights for combining probability forecasts. This paper finds that combined forecasts outperform multivariable models. These results are robust to different sample sizes and estimation windows. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
A rapidly growing literature emphasizes the importance of evaluating the forecast accuracy of empirical models on the basis of density (as opposed to point) forecasting performance. We propose a test statistic for the null hypothesis that two competing models have equal density forecast accuracy. Monte Carlo simulations suggest that the test, which has a known limiting distribution, displays satisfactory size and power properties. The use of the test is illustrated with an application to exchange rate forecasting. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
4.
James W. Taylor 《Journal of forecasting》1999,18(2):111-128
A widely used approach to evaluating volatility forecasts uses a regression framework which measures the bias and variance of the forecast. We show that the associated test for bias is inappropriate before introducing a more suitable procedure which is based on the test for bias in a conditional mean forecast. Although volatility has been the most common measure of the variability in a financial time series, in many situations confidence interval forecasts are required. We consider the evaluation of interval forecasts and present a regression‐based procedure which uses quantile regression to assess quantile estimator bias and variance. We use exchange rate data to illustrate the proposal by evaluating seven quantile estimators, one of which is a new non‐parametric autoregressive conditional heteroscedasticity quantile estimator. The empirical analysis shows that the new evaluation procedure provides useful insight into the quality of quantile estimators. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
5.
The period of extraordinary volatility in euro area headline inflation starting in 2007 raised the question whether forecast combination methods can be used to hedge against bad forecast performance of single models during such periods and provide more robust forecasts. We investigate this issue for forecasts from a range of short‐term forecasting models. Our analysis shows that there is considerable variation of the relative performance of the different models over time. To take that into account we suggest employing performance‐based forecast combination methods—in particular, one with more weight on the recent forecast performance. We compare such an approach with equal forecast combination that has been found to outperform more sophisticated forecast combination methods in the past, and investigate whether it can improve forecast accuracy over the single best model. The time‐varying weights assign weights to the economic interpretations of the forecast stemming from different models. We also include a number of benchmark models in our analysis. The combination methods are evaluated for HICP headline inflation and HICP excluding food and energy. We investigate how forecast accuracy of the combination methods differs between pre‐crisis times, the period after the global financial crisis and the full evaluation period, including the global financial crisis with its extraordinary volatility in inflation. Overall, we find that forecast combination helps hedge against bad forecast performance and that performance‐based weighting outperforms simple averaging. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
In the event studies, the accuracy of the abnormal returns assessment is highly dependent on the accuracy of the preceding expected return model. If the expected return model is inadequate, there is a possibility that a part of returns is labeled as abnormal returns even though they are not. Currently, we have a variety of options to set up an expected return model. To obtain unbiased abnormal returns, one should pay attention to the performance of the expected return model. In this research, we propose that the optimal forecast lemma can be consulted beforehand so that minimizing the optimal forecast error in the expected return model will yield unbiased abnormal returns. We introduce and prove a proposition that the optimal forecast error is an unbiased estimator for abnormal return. The proposition induces assessing the performance of abnormal return estimation to preemptively evaluate the out-sample forecast accuracy of the model employed. In an illustrative dataset, we examine various models. The approach requires preliminary computational effort; however, it is useful for accurately obtaining the abnormal return predictions. 相似文献
7.
Mu‐Chun Wang 《Journal of forecasting》2009,28(2):167-182
In this paper, we put dynamic stochastic general equilibrium DSGE forecasts in competition with factor forecasts. We focus on these two models since they represent nicely the two opposing forecasting philosophies. The DSGE model on the one hand has a strong theoretical economic background; the factor model on the other hand is mainly data‐driven. We show that incorporating a large information set using factor analysis can indeed improve the short‐horizon predictive ability, as claimed by many researchers. The micro‐founded DSGE model can provide reasonable forecasts for US inflation, especially with growing forecast horizons. To a certain extent, our results are consistent with the prevailing view that simple time series models should be used in short‐horizon forecasting and structural models should be used in long‐horizon forecasting. Our paper compares both state‐of‐the‐art data‐driven and theory‐based modelling in a rigorous manner. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
A model previously developed by Lackman (C. L. Lackman, Forecasting commercial paper rates. Journal of Business Finance and Accounting 15 (1988) 499–524) for the period 1960 to 1985 is updated to include the 1990s and incorporate statistical techniques relating to tests for stationary conditions not available in 1988. As in the previous model, the demand for commercial paper by each institution (Households (HH), Life Insurance Companies (LIC), Non‐Financial Corporations (CRP) and Finance Corporations (FC)) and the total demand is simulated. Simulations of the commercial paper rate are also generated—using just the demand equations (total supply exogenous) and then employing the entire model (supply endogenous) to determine the rate. Simulation periods are from 1960:2 to 2001:4 for all demand simulations. The dynamic simulation of the total demand for commercial paper performs well. The resulting root mean square error, 3.485, compares favourably with the Federal Reserve Boston–Massachusetts Institute of Technology (FRB–MIT) estimate of the commercial paper rate (deLeeuw and Granlich, 1968). Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
9.
Recent research suggests that non-linear methods cannot improve the point forecasts of high-frequency exchange rates. These studies have been using standard forecasting criteria such as smallest mean squared error (MSE) and smallest mean absolute error (MAE). It is, however, premature to conclude from this evidence that non-linear forecasts of high-frequency financial returns are economically or statistically insignificant. We prove a proposition which implies that the standard forecasting criteria are not necessarily particularly suited for assessment of the economic value of predictions of non-linear processes where the predicted value and the prediction error may not be independently distributed. Adopting a simple non-linear forecasting procedure to 15 daily exchange rate series we find that although, when compared to simple random walk forecasts, all the non-linear forecasts give a higher MSE and MAE, when applied in a simple trading strategy these forecasts result in a higher mean return. It is also shown that the ranking of portfolio payoffs based on forecasts from a random walk, and linear and non-linear models, is closely related to a non-parametric test of market timing. 相似文献
10.
Philip Hans Franses;Jiahui Zou;Wendun Wang; 《Journal of forecasting》2024,43(8):3194-3202
This paper puts forward a new and simple method to combine forecasts, which is particularly useful when the forecasts are strongly correlated. It is based on the Mincer Zarnowitz regression, and a subsequent determination using Shapley values of the weights of the forecasts in a new combination. For a stylized case, it is proved that such a Shapley-value-based combination improves upon an equal-weight combination. Simulation experiments and a detailed illustration show the merits of the Shapley-value-based forecast combination. 相似文献
11.
Yoichi Tsuchiya; 《Journal of forecasting》2024,43(5):1399-1421
This study assesses the performance of the GDP growth forecasts by the European Bank for Reconstruction and Development for 38 countries between 1994 and 2019. It presents the following results. First, forecast performances improved over time. Second, the projections were mostly conservative, except for some countries with optimistic next-year forecasts. Third, these forecasts were broadly rational once asymmetric loss was assumed. Fourth, the magnitude of improvement in forecast performance, conservativeness, and optimism were likely to differ across regions, Commonwealth of Independent States membership status, and income levels. Fifth, information rigidity was mostly found to be present. Sixth, there was less information rigidity in the short-term horizon in recent years, suggesting that improvement in the European Bank for Reconstruction and Development's forecasting practice and expanded information availability in transition economies enhanced its efficiency. 相似文献
12.
This paper illustrates the importance of density forecasting and forecast evaluation in portfolio decision making. The decision‐making environment is fully described for an investor seeking to optimally allocate her portfolio between long and short Treasury bills, over investment horizons of up to 2 years. We examine the impact of parameter uncertainty and predictability in bond returns on the investor's allocation and we describe how the forecasts are computed and used in this context. Both statistical and decision‐based criteria are used to assess the predictability of returns. Our results show sensitivity to the evaluation criterion used and, in the context of investment decision making under an economic value criterion, we find some potential gain for the investor from assuming predictability. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
Jordi Pons 《Journal of forecasting》2000,19(1):53-63
This paper analyses the size and nature of the errors in GDP forecasts in the G7 countries from 1971 to 1995. These GDP short‐term forecasts are produced by the Organization for Economic Cooperation and Development and by the International Monetary Fund, and published twice a year in the Economic Outlook and in the World Economic Outlook, respectively. The evaluation of the accuracy of the forecasts is based on the properties of the difference between the realization and the forecast. A forecast is considered to be accurate if it is unbiased and efficient. A forecast is unbiased if its average deviation from the outcome is zero, and it is efficient if it reflects all the information that is available at the time the forecast is made. Finally, we also examine tests of directional accuracy and offer a non‐parametric method of assessment. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
14.
Yaein Baek 《Journal of forecasting》2019,38(4):277-292
This paper constructs a forecast method that obtains long‐horizon forecasts with improved performance through modification of the direct forecast approach. Direct forecasts are more robust to model misspecification compared to iterated forecasts, which makes them preferable in long horizons. However, direct forecast estimates tend to have jagged shapes across horizons. Our forecast method aims to “smooth out” erratic estimates across horizons while maintaining the robust aspect of direct forecasts through ridge regression, which is a restricted regression on the first differences of regression coefficients. The forecasts are compared to the conventional iterated and direct forecasts in two empirical applications: real oil prices and US macroeconomic series. In both applications, our method shows improvement over direct forecasts. 相似文献
15.
In this paper a nonparametric approach for estimating mixed‐frequency forecast equations is proposed. In contrast to the popular MIDAS approach that employs an (exponential) Almon or Beta lag distribution, we adopt a penalized least‐squares estimator that imposes some degree of smoothness to the lag distribution. This estimator is related to nonparametric estimation procedures based on cubic splines and resembles the popular Hodrick–Prescott filtering technique for estimating a smooth trend function. Monte Carlo experiments suggest that the nonparametric estimator may provide more reliable and flexible approximations to the actual lag distribution than the conventional parametric MIDAS approach based on exponential lag polynomials. Parametric and nonparametric methods are applied to assess the predictive power of various daily indicators for forecasting monthly inflation rates. It turns out that the commodity price index is a useful predictor for inflations rates 20–30 days ahead with a hump‐shaped lag distribution. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Masahiro Ashiya 《Journal of forecasting》2006,25(1):25-36
We investigate the rationality of forecast revisions made by the IMF and the OECD over the past three decades. We find that 60% of real‐GDP forecast series and 37% of GDP‐deflator forecast series are consistent with rationality. Forecast smoothing is found in real‐GDP forecasts. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
Steven Trypsteen 《Journal of forecasting》2017,36(6):615-628
This paper examines the relative importance of allowing for time‐varying volatility and country interactions in a forecast model of economic activity. Allowing for these issues is done by augmenting autoregressive models of growth with cross‐country weighted averages of growth and the generalized autoregressive conditional heteroskedasticity framework. The forecasts are evaluated using statistical criteria through point and density forecasts, and an economic criterion based on forecasting recessions. The results show that, compared to an autoregressive model, both components improve forecast ability in terms of point and density forecasts, especially one‐period‐ahead forecasts, but that the forecast ability is not stable over time. The random walk model, however, still dominates in terms of forecasting recessions. 相似文献
18.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms. 相似文献
19.
We decompose economic uncertainty into \"good\" and \"bad\" components according to the sign of innovations. Our results indicate that bad uncertainty provides stronger predictive content regarding future market volatility than good uncertainty. The asymmetric models with good and bad uncertainties forecast market volatility in a better way than the symmetric models with overall uncertainty. The combination for asymmetric uncertainty models significantly outperforms the benchmark of autoregression, as well as the combination for symmetric models. The revealed volatility predictability is further demonstrated to be economically significant in the framework of portfolio allocation. 相似文献
20.
This paper uses forecast combination methods to forecast output growth in a seven‐country quarterly economic data set covering 1959–1999, with up to 73 predictors per country. Although the forecasts based on individual predictors are unstable over time and across countries, and on average perform worse than an autoregressive benchmark, the combination forecasts often improve upon autoregressive forecasts. Despite the unstable performance of the constituent forecasts, the most successful combination forecasts, like the mean, are the least sensitive to the recent performance of the individual forecasts. While consistent with other evidence on the success of simple combination forecasts, this finding is difficult to explain using the theory of combination forecasting in a stationary environment. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献