首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Fe_2P_2O_7和碳酸锂为原材料,并通过不同的碳包覆合成LiFePO_4/C复合材料.利用XRD、SEM、碳硫分析仪、恒流充放电法和循环伏安对产物的组成、结构、形貌和电化学性能进行测试,确定含碳量为2.45wt%的LiFePO_4/C复合材料具有更好的电化学性能.实验结果表明,在0.1C倍率下,锂离子电池的放电比容量为130.49 m Ah/g,在1C倍率下,锂离子电池的放电比容量为108.58 m Ah/g.  相似文献   

2.
使用不同体积比的水/乙二醇作为溶剂,pH调至5,通过水热法制备出纯相的LiFePO_4,将其与质量分数10%的葡萄糖混合烧结,得到了含碳量不同的LiFePO_4/C材料.对所得产物进行XRD,SEM,TEM以及电化学性能测试,研究了具有不同形貌的产物对其的电化学性能的影响.结果表明不同形貌的LiFePO_4/C材料的电化学性能差异较大,其中pH=5条件下,水/乙二醇体积比为1∶1时材料的放电比容量最好,0.1C倍率下首次放电比容量为146mAh/g,充放电循环50次后,放电比容量没有明显的衰减,10C倍率下放电比容量为68mAh/g,充放电循环50次后,容量未见明显的衰减.  相似文献   

3.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

4.
采用水热反萃法合成了锂离子电池正极材料LiFePO_4,重点研究了温度对LiFePO_4结构、形貌和电化学性能的影响.分别采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安(CV)、交流阻抗(EIS)及恒电流充放电测试对样品的结构、形貌和电化学性能进行了表征.结果表明:在140~250,℃范围内水热反萃法可以合成纯相的LiFePO_4.用制备的LiFePO_4作为电池的正极材料,其电化学测试表明:250,℃合成的样品极化最小,同时具有最小的电荷转移阻抗和最大的Li+扩散系数,0.1,C下首次放电比容量为151.7,m A·h/g,较高倍率下循环40次再采用0.1,C时的放电比容量可达到161.9,m A·h/g,具有良好的倍率循环性能.  相似文献   

5.
不同碳源对LiFePO4/C复合正极材料电化学性能的影响   总被引:1,自引:1,他引:0  
取不同碳源(蔗糖、葡萄糖、聚乙烯醇)原料,采用两步固相法制备LiFePO4/C复合锂离子电池正极材料,对其进行XRD和电化学性能测试.XRD分析表明,所制产物均为单一相的橄榄石型晶体结构;恒流充放电测试结果显示,覆碳后的LiFePO4/C放电比容量和循环性能均得到明显改善,添加聚乙烯醇的LiFePO4/C首次放电容量达142.9 mA·h·g -1,充放电循环20 周后,其放电容量仍为143.1 mA·h·g-1.  相似文献   

6.
以热膨胀法制备的膨胀石墨为载硫体,通过熔融法制备出不同含硫量的硫/膨胀石墨复合材料.采用X射线衍射、热重测试、恒流充放电测试、循环伏安法、电化学阻抗谱等多种方法分析了膨胀石墨对锂硫电池电化学性能的影响规律.结果表明:当硫、膨胀石墨质量比为7∶3时,电池具有较高的比容量和较好的循环稳定性,0. 1C首次放电比容量为936 m Ah/g,较纯硫提高了324 m Ah/g;不同倍率下循环50圈以后可逆容量为509m Ah/g,容量保持率为55. 2%,1C倍率下循环100圈后容量保持率为78. 9%,库仑效率接近100%;循环过程中电化学活性最高、极化最小,界面行为良好.  相似文献   

7.
采用高温固相法烧结制备得到正极材料Li Ni0.5Co0.2Mn0.3O2,通过X射线衍射(XRD)、扫描电镜(SEM)以及循环伏安(CV)、交流阻抗(EIS)等电化学性能测试手段,探讨高温烧结工艺中不同锂源对材料结构、形貌及电化学性能的影响,结果表明,采用Li OH作为锂源合成的材料与采用其他锂源相比,具有较好的层状结构和电化学性能.该材料在0.1C倍率下的首次充放电容量和库伦效率较高(172.7 m Ah/g,89.08%),在0.5C、1C倍率下循环50次后,材料的放电容量仍保持在144.5 m Ah/g和136.2 m Ah/g.  相似文献   

8.
通过共沉淀法合成了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4,并使用Zn O对其表面进行包覆改性。通过X射线衍射(XRD)、激光拉曼光谱(Raman)、场发射扫描电镜(FESEM)、透射电子显微镜(TEM)、电化学阻抗图谱(EIS)、恒流充放电循环测试分析技术对所得材料进行测试与表征。结果表明:包覆未改变基体结构并且适量的ZnO包覆可以提高LiNi_(0.5)Mn_(1.5)O_4的电化学性能。当包覆量为1. 5%时,材料的电化学性能提升最为明显,室温0. 1C倍率和1C倍率下首次放电比容量分别为133. 15,132. 66 m Ah/g,充放电循环100次后容量保持率分别为96. 1%,90. 1%;在55℃高温1C倍率下首次放电比容量为126. 96 m Ah/g,充放电循环100次后容量保持率仍能达到77. 2%,而未包覆的LiNi_(0.5)Mn_(1.5)O_4在相同条件下容量保持率仅为42. 9%。  相似文献   

9.
采用高导电性碳材料和商业活性炭分别作为硫的载体,与单质硫混合后进行热处理制得SP/S和CAC/S硫碳复合材料,利用热重测试、循环伏安、交流阻抗和恒流充放电测试等分析方法,研究了正极中电极材料厚度、硫碳复合比例对电池电化学性能的影响.结果表明:适当增加电极材料厚度可以有效地改善Super-P材料电极综合电化学性能;通过改变硫碳复合比例,提高硫含量则对活性炭材料锂硫电池电极的性能提升有着显著的效果.其中,含硫量为63.60%的CAC/S正极材料首次放电比容量达到908.8 m Ah/g,活性物质利用率为54.2%,100圈循环后放电容量为594.1 m Ah/g,容量保持率达到65.4%.  相似文献   

10.
采用溶胶-凝胶法制备了单斜结构的Li Fe BO3/LBO复合材料(C2/c空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的Li Fe BO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6m Ah/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 m Ah/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中Li Fe BO3粒子之间的导电性明显得到改善.  相似文献   

11.
采用溶胶-凝胶法制备了单斜结构的Li Fe BO3/LBO复合材料(C2/c空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的Li Fe BO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6m Ah/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 m Ah/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中Li Fe BO3粒子之间的导电性明显得到改善.  相似文献   

12.
以Fe(NO_3)_3·9H_2O、LiNO_3、NH_2H_2PO_4为原料,以蔗糖为碳源,以草酸为配位剂和还原剂,通过溶胶一凝胶法制备了LiFePO_4/C复合材料.应用TG、XRD、SEM等手段对材料的结构和形貌进行了表征,并通过CV、EIS和恒流充放电测试研究了材料的电化学性能.结果表明,550℃时即可得到LiFePO_4晶体材料;而600℃时制得的LiFePO_4粒径细小且分布均匀,粒径在200~400 nm之间;该材料在0.1 C和1 C放电倍率下首次放电比容量分别为161、145 mAh/g,10 C时达到108 mAh/g.  相似文献   

13.
以Li_2CO_3,锐钛矿纳米TiO_2为原料采用高温固相法合成了微米级Li_4Ti_5O_(12)负极材料,并将其与葡萄糖、Ag NO3复合,制备出了C+Ag表面修饰的C+Ag/Li_4Ti_5O_(12)复合材料。借助XRD、SEM、电化学工作站和充放电测试仪表征C+Ag/Li_4Ti_5O_(12)材料的物理性能和电化学性能。结果表明:C+Ag表面修饰的Li_4Ti_5O_(12)复合材料有效提升了Li_4Ti_5O_(12)的电化学性能。0.1 C首次放电比容量为165.8 m Ah/g,5 C放电比容量仍可达到80 m Ah/g。  相似文献   

14.
以廉价的Fe3 为铁源,通过溶胶和碳热还原两步法制备出锂离子正极材料LiFePO4,用XRD、SEM、交流阻抗和恒流充放电方法表征了材料的结构、形貌和电化学性能.结果表明,合成的材料具有橄榄石型晶体结构;碳可以抑制材料颗粒的团聚,降低电极反应阻抗;在0.1 C的放电倍率下,LiFePO4首次放电容量为103.3 mA·h/g,LiFePO4/C在放电倍率0.1 C、0.2 C和0.5 C下的首次放电容量分别为147.9 mA·h/g、133.3 mA·h/g和122.1 mA·h/g, 20次循环后容量衰减率分别为3.0 %、2.7%和2.4%.  相似文献   

15.
以醋酸锂、硝酸亚铁和磷酸二氢铵为主要原料,柠檬酸为溶剂和碳源,采用溶胶-凝胶法在氩气保护下合成橄榄石型LiFePO_4阴极材料.为了改善电池的电化学性能,在LiFePO_4阴极材料的制备过程中添加了氟和锌离子.采用扫描电镜、X线衍射光谱和恒电流充-放电测试系统分别表征了材料的微观结构、形貌和电化学性能.结果表明,氟和锌离子的添加能影响LiFePO_4作为锂离子电池阴极材料的微结构及电化学性能.在室温下,Li Fe_(1-y)Zn_y(PO_4)_(1-x/3)F_x/C(x=y=0.01)作为阴极材料制备的电池在0.1 C的倍率下放电,首次放电容量为166.0 m Ah·g~(-1),表明氟和锌离子共掺杂的材料在高倍率电流下具有更好的电化学性能.  相似文献   

16.
以晶态V2O5(c-V2O5)为原料,采用熔融淬冷法成功制取了V2O5干凝胶(VXG)薄膜电极,以所制备的样品作为正极,金属锂为负极组装了纽扣电池。电化学阻抗谱(EIS)分析表明,在放电过程中 ,几乎没有扩散阻抗的存在。循环伏安(CV)、恒流放电(CD)和充放电(DC)结果显示该样品具有较好的综合性能,以 60mA/ g的质量电流密度充放电,其首次放电比容量高达350mAh/ g,充放电效率可达98%,循环75次后,容量保持率仍可达61%。  相似文献   

17.
为了提高磷酸铁锂的能量密度,本文通过两步高温固相反应法合成了锂离子电池正极LiFePO_4/C复合材料,利用XRD、SEM、TEM等方法对该正极材料的晶体结构、表面形貌进行了分析研究。实验结果表明,LiFePO_4/C具有单一的橄榄石结构,通过掺杂前驱体10%(质量分数)的葡萄糖合成的材料具有良好的充放电性能和循环稳定性能球状,LiFePO4为锂离子的迁移和扩散提供了通道,有利于电化学性能的提升。在0.1 C倍率下进行充放电测试,首次放电比容量可达161 m Ahg-1,在2 C下循环了100次后复合材料的容量为148 m Ahg~(-1),库仑效率高达98%,结果表明碳包覆的LiFePO_4样品的电化学性能得到了很大提高。  相似文献   

18.
尖晶石型掺杂锂钛复合氧化物的性能研究   总被引:1,自引:0,他引:1  
陈猛  金江敏  李金媛 《应用科技》2007,34(10):58-60
采用高温固相法合成尖晶石型锂钛复合氧化物,并对材料进行Sn、Cr掺杂改性.采用XRD测试对材料进行表征,恒流充放电,电化学阻抗,循环伏安测试方法对材料进行电化学性能测试.实验结果表明,Sn、Cr复合掺杂提高了材料的容量,其中,ST首次放电容量达到168 mAh/g,SC的首次放电容量达到170 mAh/g.同时降低了材料的放电电压平台,改善了材料的电化学性能.  相似文献   

19.
以自制的磷酸铁作为铁源和磷源,用高温自生压力法(即RAPET法)合成了LiFe-PO4/C复合材料,分别比较了以葡萄糖、蔗糖或柠檬酸为碳源和以碳酸锂或氢氧化锂为锂源所得LiFePO4/C复合材料电化学性能的影响。利用X射线衍射(XRD)、循环伏安(CV)、交流阻抗(EIS)和充放电测试等方法,分别对样品的晶型和电化学性能等进行了表征和分析。结果表明:以柠檬酸为碳源、碳酸锂为锂源制备的LiFePO4/C复合材料电化学性能更优异,首次放电比容量达到166.1mAh/g。  相似文献   

20.
分别使用十二烷基苯磺酸钠(SDBS)作为表面活性剂以及十二烷基苯磺酸钠(SDBS)和聚乙烯吡咯烷酮(PVP)作为双表面活性剂,采用水解法制备出SnO_2纳米材料,并研究了SnO_2纳米材料的形貌和作为锂离子电池负极时的电化学性能之间的关系.结果表明,所制备的SnO_2纳米颗粒均为球形,大小为45~75 nm,在双表面活性剂的调控下所制备的SnO_2纳米材料体积较大.所制备的SnO_2纳米颗粒均为具有金红石结构的锡石型,属于四方晶系.恒电流充放电循环测试结果表明,SnO_2纳米颗粒具有较高的放电比容量,首次放电比容量大约为1400~1600 m Ah/g,但是循环稳定性较差,循环5次以后样品的放电比容量衰减至400~700 m Ah/g.总之,双表面活性剂调控下,7h煅烧制备得到的SnO_2纳米材料相对较好,具有相对较大的比容量和相对较小的阻抗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号