首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
运用密度泛函理论结合非平衡格林函数的方法,对Si6原子链与两半无限Au(100)-3×3电极耦合构成纳米结点的电子输运行为进行了理论模拟,对结点在不同距离下的电导、结合能进行了计算,结果得到当两电极距离为2.219 nm时,结点结合能较大,结构比较稳定,此时Si-Si平均键长为0.213 nm,Si-Au键长为0.228 nm.对于稳定结构结点,平衡电导为1.093 G0,电子主要通过Si原子的px与py态电子形成的π键进行传输;在-1.2~1.2 V的电压范围内,Si原子链导体具有比较稳定的电导,表现出类似金属的导电特性,其I-V曲线近似为直线关系.  相似文献   

2.
以C-Si-C-Si直线原子链与Au(100)-3×3电极耦合所构成的纳米结点为研究对象,用密度泛函理论结合非平衡格林函数的方法,对结点的电子输运进行了理论模拟.计算结果得到:当2电极距离为1.686 nm时,纳米结点体系总能量最低,结构最稳定,C-Si平均键长为0.166 nm,此时结点的透射系数为0.627,平衡电导为0.627 G_0,电子传输通道主要由碳、硅原子的p电子轨道形成的π键所构成;在电压为0~1.0 V时,纳米结点稳定结构的电导随着外偏压的增大而减小.  相似文献   

3.
【目的】探究双原子链间的距离对电子输运性质的影响。【方法】运用密度泛函理论与非平衡格林函数相结合的方法对由两条Si原子链平行并列构成的双原子链通过S原子与两个半无限长的Au(100)电极相耦合构成的纳米结点的电导进行理论模拟计算。【结果】原子链之间距离增大时,电导变化显著。当d=0.385nm时,结点的平衡电导取得最大值,且大于单原子链的平衡电导的两倍,电流-电压曲线表现出比较良好的线性特征;当d0.435nm时,随着距离的继续增大,双原子链的电导几乎不再变化,大小等于单原子链电导的2倍。【结论】在一定距离范围内,原子链间的距离对结点的平衡电导有重要影响。  相似文献   

4.
【目的】探究双原子链间的距离对电子输运性质的影响。【方法】运用密度泛函理论与非平衡格林函数相结合的方法对由两条 Si 原子链平行并列构成的双原子链通过 S 原子与两个半无限长的 Au ( 100 )电极相耦合构成的纳米结点的电导进行理论模拟计算。【结果】原子链之间距离增大时,电导变化显著。当 d =0.385nm 时,结点的平衡电导取得最大值,且大于单原子链的平衡电导的两倍,电流 - 电压曲线表现出比较良好的线性特征;当 d >0.435nm 时,随着距离的继续增大,双原子链的电导几乎不再变化,大小等于单原子链电导的 2 倍。【结论】在一定距离范围内,原子链间的距离对结点的平衡电导有重要影响。
  相似文献   

5.
运用密度泛函理论与非平衡格林函数相结合的方法对硅原子链与Au(100)电极耦合构成纳米结点的电子输运性质进行了理论模拟计算.结点构型主要考虑了原子单链、原子双链(优化、未优化)分别与电极耦合的3种情形,计算结果得到3个纳米结点的平衡电导,分别为2.659 G_0,3.020 G_0,3.436 G_0(G_0=2e~2/h).电子传输通道主要由Si原子的p电子轨道电子构成,双原子链的电导明显优于单原子链;在-1.2~1.2V,随着外偏压的增大,原子链的电导几乎不变,其I-V曲线都表现出线性特征.  相似文献   

6.
运用密度泛函理论结合非平衡格林函数方法,对5个Al原子构成的链耦合在Au(100)之间所形成的三明治 结构的纳米结点的电子输运性质进行了第一性原理计算,结果得到在两极距离为2.212nm 时,几何结构最稳定, 此时平衡电导为0.596G0(G0=2e2/h),电子主要通过Al链的p电子轨道进行传输;在-1.0~1.0V 的电压范围 内,随着正负偏压的增大,电导先减小后增大,成对称变化,而I-V曲线表现出非线性特征.  相似文献   

7.
本文用掠入射荧光XAFS研究 (Ge4/Si4) 5 /Si(0 0 1 )形变超晶格的局域结构 .超晶格中的Ge Ge和Ge Si第一配位键长分别为RGe Ge =0 .2 43nm和RGe Si =0 .2 38nm ,与晶态Ge(RGe Ge =0 .2 45nm)和共价Ge Si键长RGe Si =0 .2 40nm相比 ,其配位键长缩短了 0 .0 0 2nm ,表明Ge原子周围的晶格产生了扭曲 ,Ge Ge配位数为 1 .8和Ge Si配位数为 2 .2显然偏离了理论的配位数Ge Ge为 3和Ge Si配位数为 1 .我们提出Ge和Si原子的位置交换模型来解释 (Ge4/Si4) 5 超晶格的界面结构  相似文献   

8.
运用密度泛函理论结合非平衡格林函数对6个Si原子构成的直线链两侧以对顶位、对空位分别与理想Au(100)3×3半无限电极耦合的纳米结点结构的电子输运特性进行了第一性原理计算.计算结果得到对空位结构比对顶位结构更稳定,电导性也更好,电导随着正负电压的增大而略有减小,且呈现出对称性变化,其电流电压曲线表现出线性特征.  相似文献   

9.
基于密度泛函理论,运用非平衡格林函数的方法,对B直线原子链、N直线原子链、Si直线原子链耦合石墨烯纳米带构成分子器件的电子输运特性进行了第一性原理模拟,计算得到3种不同构型分子器件的平衡电导,分别为1.16 G0,0.79 G0,1.16 G0.电荷布局计算结果表明,原子链耦合石墨烯改变了原子链原子的局域态密度,为电子的传输提供了更多的隧穿模式.在0~1.2 V时,对于graphene+5B,graphene+5Si分子器件的电流随着电压的增大而增大,其I-V关系近似为线性关系,表现出金属导电特性;而对于graphene+5N分别在0~0.7 V,0.9~1.2 V时,I-V关系近似为线性,但在0.7~0.8 V时却存在负微分电阻现象.  相似文献   

10.
采用密度泛函理论B3LYP方法,在6-311G*水平上,对Si5原子簇各稳定构型中的一个Si原子,经M(M=Li,Na,K,Mg,Mg,Ca,B,Al)取代后所得到的各种Si4M原子簇的几何构型,进行优化和频率计算,获得它们的稳定结构.在所有的Si4M原子簇中,具有C2v对称的三角双锥结构是最稳定的构型,且同一主族金属原子,按照从上到下的顺序,Si-M键Mulliken重叠布居数依次减少,键强度依次减弱,键长依次变长;同一周期金属原子,按照从左到右的顺序,Si-M键Mulliken重叠布居数依次增大,键强度依次增强,键长依次变短.与同一主族和同一周期的原子共价半径的变化规律是一致的.  相似文献   

11.
基于密度泛函理论,运用非平衡格林函数对(GaAs)_4原子链耦合石墨烯纳米条带的电子输运性质进行了第一性原理计算,结果发现通过改变原子链与石墨烯之间的距离可以有效调制系统的电子传输行为.当(GaAs)_4原子链与石墨烯之间的距离d在0.10~0.28nm的范围内变化时,石墨烯、原子链上各自的电子传输要相互影响,且系统的平衡电导在2G_0~7G_0之间发生G_0(G_0=2e~2/h)整数倍的变化,即表现出量子化电导现象;当d0.28nm时,总的电导等于各自的电导之和,此时(GaAs)_4原子链与石墨烯之间的耦合很弱,各自的电子输运相互影响很小.  相似文献   

12.
在HF/STO-3g基础上,利用密度泛函B3P86方法,选用6-311g基组,对聚丙烯腈PAN的结构链进行了理论研究.在结构优化方面,主链CC平均键长0.154 1 nm,属于sp3型杂化.支链CC平均键长0.146 0 nm.CN平均键长0.115 7 nm.电荷分布方面,计算得出,主链C原子带较强的负电荷,N原子带负电荷,相对较弱.H原子带较强的正电荷,是和N原子相连的C原子所带正电荷的3倍多.最后分析了结构链的振动模式.  相似文献   

13.
本文用掠入射荧光XAFS研究(Ge4/Si4)5/Si(001)形变超晶格的局域结构.超晶格中的Ge-Ge和Ge-Si第一配位键长分别为RGe-Ge=0.243 nm和RGe-Si=0.238 nm,与晶态Ge(RGe-Ge=0.245 nm)和共价Ge-Si键长RGe-Si=0.240 nm相比,其配位键长缩短了0.002 nm,表明Ge原子周围的晶格产生了扭曲,Ge-Ge配位数为1.8和Ge-Si配位数为2.2显然偏离了理论的配位数Ge-Ge为3和Ge-Si配位数为1.我们提出Ge和Si原子的位置交换模型来解释(Ge4/Si4)5超晶格的界面结构.  相似文献   

14.
在石油醚和丙酮溶液中,配合物Ni[S2P(OCH2CH2PH)2]2与1,10-邻菲啰啉(phen)反应得到了绿色的氮碱加合物1,10-林菲啰啉.双(O,O-(二2-苯乙基)二硫代磷酸)合镍(Ⅱ),用元素分析、紫外-可见光谱、红外光谱、热分析和X-射线单晶衍射进行了表征。加合物属单斜晶系,P21/c空间群。晶胞参数为a=1.0987(9)nm,b=2.1432(9)nm,c=1.9025(5)nm,β=98.68(1)°,V=4.429(4)nm3,Z=4,Dc=1.370 Mg/m3,F(000)=1904,μ=0.743mm-1,可观测衍射点为3498,R=0.057,wR=0.1492(I(2σ(Ⅰ))。加合物为畸变八面体构型,配位原子来自于两个O,O'-二(2-苯乙基)二硫代磷酸根的4个硫原子和配体phen的2个氮原子。Ni-S键的键长在0.2474(2)-0.2505(17)nm范围内,Ni-N键的键长分别为0.2081(4)nm和0.2090(5)nm。因分子间存在π-π堆积、C-H…O和C-H…S氢键作用,加合物的晶体结构形成了一维链对和一维双链螺旋链。一维链对和一维双链螺旋链通过C-H…O氢键作用进一步延展为三维结构。  相似文献   

15.
根据能形法确定金属Mo的价键结构,并研究金属Mo的价键结构随温度和压力的变化。研究结果表明:室温时,金属Mo的外层价电子数为e c4.910 4(dc2.700 4+sc0.560 0+p1c.650 0)e1f.089 6,单键半径为0.128 08 nm;随着温度升高,金属Mo的共价电子减少,近自由电子增加,但在固相范围内变化不大;随着温度升高,键长增长,键价降低,键能也降低;零压时金属Mo的外层价电子数为e c4.903 2(dc2.703 2+sc0.560 0+p1c.640 0)e1f.096 8,单键半径为0.128 04 nm;随着压力的升高,金属Mo的共价电子增加,近自由电子减少,晶体的共价性增加,金属性减弱,且键长缩短,键价增大,键能降低。  相似文献   

16.
以丁炔二羧酸为配体与金属盐反应,得到金属配合物,并对其结构进行了表征。在配合物C20H18ErN2O9中,晶体属单斜晶系,空间群为P 21/c。a=0.9711(19)nm,b=0.9866(2)nm,c=2.2684(5)nm,β=94.55(3)。铒原子为八配位反四棱柱构型,并以丁炔二羧酸桥联构成了一维梯子链,且通过氢键作用形成了三维超分子网络结构。  相似文献   

17.
谢青 《河南科学》2002,20(2):134-136
制备了配合物 {Co[(C2 H5) 2 NCS2 ]3 } ,经X 射线四圆衍射方法确定了配合物的结构 ,晶体学参数如下 :单斜晶系 ,空间群C2 /c ,C15H3 0 N3 S6Co ,Mr =5 0 3.7,a =1.410 5 (2 ) ,b =1.0 2 99(3) ,c =1.70 5 9(3)nm ,β=110 .15 (1)°,V =2 .32 6 5nm3 ,Z =4.Dc =1.46 6 g/cm3 ,μ =7.77cm-1,F(0 0 0 ) =10 5 6 ,R =0 .0 33,Rw=0 .0 4.中心钴原子由来自二乙胺基硫代甲酸的六个硫原子构成八面体配位结构。Co -S键长和S -Co -S键角分别位于 0 .2 2 6 7(1)~ 0 .2 2 70 (1)nm和 76 .34 (4 )~ 94.48(4 )°之间。  相似文献   

18.
采用密度泛函理论B3LYP/Lanl2dz方法,计算研究了(X2InN3)n(n=1-3;X=F,Cl,Br,I)簇合物的几何构型、电子结构和聚合反应热力学性质,讨论了取代基效应。研究表明,二聚体(X2InN3)2和三聚体(X2InN3)3(X=F,Cl,Br,I)的优化几何构型均为由不同子体系的叠氮基α-N和In原子相连而成的环状结构。在卤原子(X)取代簇合物中,取代位附近的键长、键角和原子电荷改变较大。由前线轨道能隙ΔEgap和反应焓变ΔH0可见,同类簇合物的稳定性排序为(F2InN3)n>(Cl2InN3)n>(Br2InN3)n>(I2InN3)n(n=1-3)。求得298.2 K温度下聚合反应的吉布斯自由能变化ΔG0均为负值,表明反应可自发进行。此外,还发现簇合物的性质随聚合度n增加的变化规律。  相似文献   

19.
C58Si2的几何结构和电子结构研究   总被引:1,自引:1,他引:0  
采用密度泛涵BLYP/6—311G和杂化密度泛涵B3LYP/6—311G方法,对C58Si2的几何结构和电子结构进行系统研究。发现在C58Si2的同素异形体中,2个Si原子位于六边形对角位置时(C58Si2-6)比2个Si原子位于五边形对角位置时(C58Si25)的能量低0.11eV,是C58Si2的基态几何结构。C58Si2同C60相比,只是在Si原子附近原子间的间距有较为明显的变化,其它部分基本保持C60的构型。在电子结构方面,由于C58Si2—6具有C8对称性,所以使原先的能级简并度消除,LUMO能级下降,HOMO能级上升,HOMO与LUMO间的能隙变小;每个Si原子均失去1.122e的电荷,主要转移到Si—C键上的3个邻近的C原子上,使C58Si2中的Si—C化学键受到极化,束缚能增大。  相似文献   

20.
第二过渡金属双核卤化物从头算研究   总被引:1,自引:0,他引:1  
采用 ab initio 有效核芯势(ECP)方法研究第二过渡金属双核卤化物的电子结构。首先讨论 ECP价基的准确性和可靠性,而后用其计算[M_2Cl_8]~(n-)体系(M=Mo、Tc、Ru、Rh)。结果表明:[Mo_2Cl_8]~(4-)如[Tc_2Cl_8]~(2-)的金属间存在四重键σ~2π~4δ~2,而其等电子体系[Ru_2Cl_8],[Rh_2Cl_8]~(2+),金属间键级为 0。同时还计算了[M_2X_9]~(3-)体系(M=Nb、Mo、Tc、Ru,X=Cl、Br),其电子结构表明:金属间除了 M-Cl-M 桥键联结外,还直接形成金属键。从 Nb?Ru,随原子序数增大金属键从双键变为单键,以至不成键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号