首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
姚焕英 《江西科学》2008,26(4):605-607
采用种子乳液聚合技术制备了PSt/PBA/PMMA(聚苯乙鬻彭聚丙烯酸酯/聚甲基丙烯酸甲酯)乳胶型互穿网络聚合物涂料。当单体配比St:BA:MMA=4:3:2,交联荆用量为单体总量的1.5%,引发剂用量为1.2%时,涂料综合性能优良。  相似文献   

2.
首次合成了聚二甲基硅氧烷(PDMS)/聚苯乙烯(PS)乳胶IPN.摸索了PDMS/PS乳胶IPN聚合的乳化剂条件,确定了既能使二甲基硅氧烷聚合,又能使苯乙烯聚合的乳化剂和乳化剂的最佳用量.探讨了PDMS/PS乳胶IPN中,交联剂用量改变,组份的变化对乳液成膜性的影响.  相似文献   

3.
通过对PVC/PBA(聚氯乙烯/聚丙烯酸丁酯)和PS/PBA(聚苯乙烯/聚丙烯酸丁酯)两种LIPN的玻璃化转变温度Tg和动态力学等性能的测定,比较了它们的相容性和阻尼性能。实验结果表明PVC/PBALIPN的相容性和阻尼性能较PS/PBALIPN更好  相似文献   

4.
针对在制备的LIPN PS/PBA的两网络中因含有热交联的活性官能团—CH_2OH基和—COOH基,而在成膜过程中加热交联,使体系的交联程度进一步提高。通过动态力学性能的测定,主要考察了NMA不同加入方式和用量对体系tgδ的影响。结果表明:NMA用在网络Ⅱ时,随着NMA质量分数的增加,tgδ值逐渐增大;NMA用在网络Ⅰ时对tgδ的影响比较复杂。总的来说,NMA的质量分数在一定范围内,NMA用在网络Ⅱ时对tgδ的影响明显大于用在网络Ⅰ时的影响,当其含量增加到一定程度时,NMA两种不同的加入方式对tgδ的影响变得较为接近。  相似文献   

5.
本文用乳液聚合方法合成了聚甲基丙烯酸甲酯(PMMA)和聚丙烯酸丁酯(PnBA)的乳胶互穿聚合物网络(IPNs)。动态力学分析结果表明:这种乳胶IPN具有半相容性;组成和填料量影响该乳胶IPN的阻尼性能。论文还讨论了组成对其它性能的影响。  相似文献   

6.
热固性聚丙烯酸酯树脂的合成与表征   总被引:1,自引:0,他引:1  
本文以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、甲基丙烯酸羟乙酯(HEMA)、丙烯酸(AA)为原料,过氧化二苯甲酰(BPO)为引发剂,二甲苯、醋酸丁酯作溶剂,采用溶液聚合法合成聚丙烯酸酯预聚体。讨论了反应体系、温度、引发剂用量等因素对聚丙烯酸酯预聚体的分子量及其分布的影响,确定了最佳合成工艺;然后用环氧树脂和邻苯二甲酸酐作为固化剂固化,得到了附着力好,耐水性优异的聚合物涂膜,通过凝胶渗透色谱仪(GPC)、热失重分析仪(TG)、示差扫描量热分析仪(DSC)等对聚丙烯酸酯预聚体及其涂膜的分子量大小及其分布、热稳定性、玻璃化转变温度等进行了研究;GPC测得聚丙烯酸酯预聚体的 =6094, =12101,分子量分布为系数1.9,DSC测得聚合物涂膜玻璃化转变温度为27.8℃,TG测得当聚合物涂膜质量损失20%时温度为378.59℃。  相似文献   

7.
聚丙烯/聚丙烯酸正丁酯填充IPN共混体系的力学性能研究   总被引:1,自引:1,他引:0  
采用填充方法合成的第一聚合物网络为非交联的聚丙烯(PP)多孔网状结构,第二网络为交联的聚丙烯酸正丁酯(PnBA)的结晶/非晶共混体系的应力-应变力学性能和网络II弹性体组分PnBA对网络IPP组分的增韧作用,探讨了弹性体PnBA的交联剂用量、基质PP取向等因素对填充IPN共混体系力学性能的影响。  相似文献   

8.
常林开  余守志 《河南科学》1999,17(4):370-373
用动态机械法(DMA)研究了聚氨酯/聚丙烯酸酯互穿事物网络(PU/PEAIPN)的动态机械特性,并分别与单纯的聚氨酯(PU)和聚丙烯酸乙酯(PEA)的动态热机械性能进行对比。结果表明:在玻璃化温度以下,PU/PEAIPN的DMA曲线振幅小于单纯的PU和PEA;当完全进入高弹态后,IPN的DMA曲线振幅大于单纯的PU和PEA。PU/PEAIPN的玻璃化转变温度别比PU和PEA提高16.2和30.1度  相似文献   

9.
PU/PGMA同步互穿网络的力学性能   总被引:4,自引:0,他引:4  
研究影响高增塑聚氨酯/聚甲基丙烯酸缩水甘油酯同步互穿网络力学性能的因素,寻求最佳力学性能配方。方法,制备了不同配方的样品,对其进行拉伸试验以及动态力学分析。结果与结论改变PU与PGMA的组成比,SIN的拉伸强度和延伸率呈非单调变化,在PU含为60%附近时出现极大值,在体系中引入PGMA组分的交联剂及引入网间接枝剂均使体系的交联密度上升,导致抗张强度升高,断裂伸长率下降。  相似文献   

10.
互穿网络聚合物(IPN)是一种新型的聚合物共混物。采用分子设计的方法在IPN主链上引入相反电荷,利用体系中的氢键、两网络接枝以及基团效应等,改善IPN的相容性,可得到具有高度互穿和较低相分离的IPN材料。 本文讨论聚醚聚氨酯/聚甲基丙烯酸甲酯-甲基丙烯酸IPN的组成比、NCO/OH比及相反电荷的浓度对IPN相容性及力学性能的影响。  相似文献   

11.
利用重量分析法初步探讨了LIPN PS/PBA和LIPN PBA/PS反应过程的表观动力学,研究了不同种子、交联剂用量,对各步反应速率的影响,测定了各步反应的活化能。发现该体系种子乳液聚合具有下述3个特点:(1)在聚合初期不存在加速阶段,即没有成核阶段;(2)聚合速率随交联荆的用量增加而明显地提高;(3)以交联的PS为种子,BA种子乳液聚合过程表观活化能(E_a)为80kJ/mol,该值与在相同条件下BA自身乳液聚合过程的表观活化能近似;以交联的PBA为种子,S种子乳液聚合过程的表观活化能(E_a)为84kJ/mol,此值几乎是S自身乳液聚合(在相同条件下)表观活化能(E_a)的两倍。  相似文献   

12.
以丙烯酸丁酯(BA)为单体,过硫酸钾(KPS)为引发剂,通过无皂乳液聚合进行了聚丙烯酸丁酯(PBA)核体的合成,并以此为种子乳液,制备PBA/PMMA核/壳结构乳液;讨论了引发剂量及水油比对种子乳液粒径及粒径分布的影响,以及PBA/PMMA核壳比对复合乳液的粘度、粒径、粒径分布的影响。通过激光粒度仪及透射电子显微镜对核/壳粒子的形态结构进行了表征。  相似文献   

13.
聚氨酯/苯并(口恶)嗪互穿聚合物网络的合成及表征   总被引:3,自引:0,他引:3  
采用二步法 ,以部分交联的聚氨酯 (PU)为聚合物 ,以双酚 A型苯并嗪 (BA)为聚合物 合成了聚氨酯 /苯并嗪互穿聚合物网络 (PU/BA IPN) ,对产物的性能进行了研究 ,同时应用升温红外对 PU/BA IPN的聚合进行动态跟踪 .结果表明 ,材料的热力学性能受体系结构形态的影响较大 .而形态主要由聚合物 (即 PU)的交联密度控制 ,体系的组成对形态影响呈非线性 .体系中存在的活性官能团——氨基团对苯并嗪的开环聚合有催化作用 .  相似文献   

14.
研究影响PVC/PBA和PS/PBA两种芯壳乳液合成的因素,并讨论了这两种乳液的性能及其乳胶粒形态结构的成因。  相似文献   

15.
采用5DX-FT红外光谱仪跟踪反应过程中基团的消长情况,研究催化剂用量对成网动力学的影响,同时用NQP-1型全自动扭辫仪研究引发剂及交联剂对IPN相分离的影响。结果表明,两网络接近同步形成时,相分离最小。  相似文献   

16.
聚氨酯/苯并(口,恶)嗪互穿聚合物网络的阻尼性能   总被引:3,自引:0,他引:3  
采用二步法,以部分交联的聚氨酯(PU)为聚合物I,双酚A型苯并恶嗪(BA)的聚合物Ⅱ合成聚氨酯/苯并恶嗪互穿聚合物网络(PU/BA IPN),并应用动态机械热力学分析对产物的阻尼性能进行了研究。结果表明,PU/BA IPN在PU:BA为1.5:1时具有最佳的宽温域的阻尼性能,低的PU联度有利于阻尼性能;适当地延长固化时间可提高体系的阻尼值,但是会使阻尼温度范围变窄。  相似文献   

17.
合成表征了由侧链带有羟基的聚甲基丙烯酸酯共聚物与二异氰酸酯(TDI)热交联聚合物网络以及丙烯酰化环氧聚合物的热交联网络组成的新型二阶非线性光学(NLO)互穿聚合物网络(IPN)体系,此IPN体系只有一个Tg,具有优良的光学品质.SHG测量表明,IPN的非线性光学稳定性较好,其二阶非线性光学系数d33值在80℃下经480min几乎未见衰减,IPN体系的d33值也较高,达到1.86×10-7esu.  相似文献   

18.
制备了聚氨酯(PU)/环氧树脂(ER)互穿聚合物网络硬泡,研究了互穿聚合物网络(IPN)硬泡的化学结构及微观结构形态.傅里叶红外光谱(FTIR)分析表明,IPN硬泡的网络间存在接枝反应.扫描电子显微镜(SEM)分析发现,IPN硬泡泡孔结构形状都比较均一.循环压缩实验研究表明:随循环次数增加,应力下降,单次循环的能量损耗下降;随ER含量增加,IPN硬泡的压缩模量和强度提高,相同应变下应力增加,每次循环耗能增加;循环压缩的加卸载应力 应变曲线可用改进的Ogden模型表示;累积能量损耗可用Weibull方程表示.  相似文献   

19.
在复合膜的制备过程中, 膜材料中高分子聚合物很难混合, 本实验在聚合物- 溶剂- 聚合物体系中加入一种增溶剂, 改变了聚合物在溶液的聚积状态, 由于是部分混溶, 在膜的形成过程中各部分聚合物凝胶机理不一样, 在表面功能层与下部支撑层之间是一层由两种聚合物交叉互相贯穿的网络结构( 即IPN 结构) , 本实验研究了形成此膜的各种影响因素  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号