首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
为了实现和评价变围压应力敏感实验关系转换为变内压应力敏感实验的等效关系,进而获取储层岩石渗透率与地层压力的关系,采用室内实验的方法,针对含微裂缝和人造裂缝的致密砂岩开展了变围压应力敏感实验、变内压应力敏感实验和特殊应力敏感实验;基于变围压实验数据,结合有效应力方程计算得到了实验岩样的渗透率随地层压力的变化关系,并与实验测定结果进行了对比分析。结果表明,计算得到的渗透率大于实验直接测定的渗透率,这种差异源于气体滑脱效应;基于Terzaghi有效应力方程计算的无因次渗透率小于对应变内压实验测定的无因次渗透率;基于非线性有效应力方程计算的无因次渗透率与对应变内压实验的无因次渗透率一致。有效应力和气体滑脱效应影响地层条件下渗透率的确定。  相似文献   

2.
为准确分析人工裂缝对水驱油效率的影响以及含裂缝岩心油水两相渗流规律,实验选取一组不同渗透率级别的岩心,并使用人工造缝技术沿岩心轴线方向造出一条贯穿缝,测定人工造缝前后水驱油过程中相关参数,运用对比分析的方法研究人工裂缝的存在对驱油效率及渗流规律的影响,并选取一块含天然裂缝岩心进行扩缝前后水驱油实验以检验实验结果。研究结果表明:裂缝性岩心相对渗透率曲线和造缝前岩心相对渗透率曲线差异明显,裂缝性岩心水驱油过程可分为三个阶段:裂缝出油段,裂缝逐渐闭合-基质出油段和裂缝闭合段。裂缝闭合后仍有一定的导流能力,水相渗透率仍高于造缝前。对于裂缝性岩心,油水相对渗透率曲线等渗点位置左移,根据等渗点位置判断岩心润湿性的规律不再适用;人工裂缝在降低驱替压差改善储层渗流条件的同时也极大的降低了水驱油效率,实验岩心造缝后渗透率约为造缝前渗透率的10~50倍,驱替压差约为造缝前的4%~16%,无水驱油效率约为造缝前的2%~16%,最终驱油效率约为造缝前的54%~69%。  相似文献   

3.
以吉林油田长岭火山岩气藏基质岩心、裂缝充填岩心、裂缝-基质岩心为研究对象,进行了油藏条件下的应力敏感实验,以储层原始有效覆压下的渗透率为基准渗透率评价了该火山岩气藏的应力敏感程度,并与传统评价方法进行了对比.研究结果表明:火山岩裂缝-基质岩心具有中等偏强的应力敏感性,基质岩心和裂缝充填岩心应力敏感程度较弱.这与用传统方法评价的3类岩心均具有极强应力敏感性的结果偏差较大,火山岩中天然缝和人工缝的闭合是造成应力敏感性的主导因素.由于有效覆压变化引起的渗透率损失主要在低有效覆压范围内(<20 MPa),而这种情况在整个油气藏开发期内可能并不会存在,因此认为新评价方法更加具有应用价值.  相似文献   

4.
应力敏感是致密砂岩气藏损害的主要原因之一,预测应力敏感损害下岩芯渗透率和裂缝开度的变化规律一直是致密砂岩储层保护领域的重点。以塔里木盆地克拉苏构造带岩样为研究对象,基于应力敏感实验及调研数据,采用机器学习多元线性回归算法,耦合了围压渗透率关系模型和K-p函数参数预测模型,建立了岩芯渗透率预测模型和裂缝开度预测模型,并通过决定系数、均方根误差和相对误差检验模型精度。结果表明,围压渗透率关系模型在裂缝性岩芯和非裂缝性岩芯中预测结果决定系数平均值均大于0.960;K-p函数参数预测模型在裂缝性岩芯中的均方根误差高于非裂缝性岩芯,但裂缝性岩芯的相对误差要低于非裂缝性岩芯,综合来看岩芯渗透率预测模型更适用于裂缝性岩芯;裂缝开度预测模型与实测值决定系数0.978,预测精度较高。建立的渗透率预测模型和裂缝开度预测模型可为致密砂岩储层的开采与保护提供指导。  相似文献   

5.
探讨塔河区块储层的应力敏感性,为制定合理生产制度提供依据.通过对目标区奥陶系储层碳酸盐岩开展不同温度下应力敏感评价实验,结果表明:碳酸盐岩应力敏感程度属于中等偏强型;碳酸盐岩试样渗透率随着有效围压增加呈指数型递减,卸压后试样渗透率难以恢复至加载前水平;试样渗透率与温度呈负指数关系,当试样从30℃升高至120℃时,渗透率...  相似文献   

6.
目前实验室测定岩芯应力敏感性通常采用变外压恒内压方式测试,该测试方法与气田实际开发过程中上覆岩层压力不变,流体压力变小的实际情况不符合,提出了变内压恒外压测试方法,采用苏里格低渗岩芯在地层温度条件下进行变内压恒外压测试和变外压恒内压测试。研究表明:变内压恒外压测试比变外压恒内压测试应力敏感性更弱,随多次应力敏感次数增加,应力敏感性变弱,甚至趋于一个极限。为气井动态分析提供了实验依据,对研究低渗气藏相对高、中、低渗岩芯在多次升降压过程中的应力敏感特征有重要意义。  相似文献   

7.
异常高压页岩气藏生产中表现为初期产量迅速递减的特征,这种情况一方面和页岩气低渗透压裂投产的方式 有关,另一方面可能和储层及压裂缝应力敏感有关。分析了页岩气井储层及压裂缝应力敏感特征,认为储层和压裂缝 在力学性质上有较大差别,应分别进行考虑,采用数值模拟方法计算了考虑应力敏感和配产大小对最终采气量的影 响,结果表明,储层的应力敏感对页岩气的生产影响较小,压裂缝应力敏感影响相对较大,如果考虑渗透率应力敏感只 和压力有关,则配产大小对最终采气量影响不大,而假设高产下具有更强的渗透率应力敏感衰竭曲线,则初期配产对 最终采气量影响较大,并采用图形诊断法进行分析,证实了这种情况下初期低配产气井生产潜能更大,研究成果可以 用于高压页岩气井的合理配产优化。  相似文献   

8.
现行裂缝参数设计方法没有考虑以压后有效渗透率为设计参数,也没有考虑经济允许的最佳压裂规模,因此不能确保压裂效果的长效性与经济性。基于支撑剂指数法,以经济最大化为目标,考虑非达西流动效应与压裂液伤害对裂缝渗透率的影响,结合经济因素、油藏规模、压裂规模间相互关系得到最优支撑剂指数函数,压裂已知规模气藏时,通过该关系函数可确定唯一的最优支撑剂指数及最优缝长,通过迭代求解可得到非达西流动条件下最优裂缝参数。计算结果表明,非达西流动效应越严重,最优支撑剂指数越小,最优缝长越小,最优缝宽越大,降低裂缝内非达西流动效应的影响需要设计低穿透比和高导流能力的裂缝。  相似文献   

9.
为研究吉木萨尔页岩储层人工裂缝渗透率在油藏生产过程中的变化规律,基于新疆吉木萨尔页岩油藏储层条件,开展不同闭合压力、不同岩性、不同铺砂浓度对裂缝渗透率影响实验.结果 表明:随着油藏开发程度不断加深,人工裂缝渗透率逐渐降低,主要分为两个阶段,且不同铺砂浓度存在差异.第一阶段:高铺砂浓度下闭合压力小于20 MPa,低铺砂浓度下闭合压力小于15 MPa,支撑剂嵌入和破碎共同导致渗透率急剧降低,降低幅度分别为60.16%、82.21%.第二阶段:高铺砂浓度下闭合压力20 ~35 MPa,低铺砂浓度下闭合压力15 ~35 MPa,仅发生支撑剂破碎使得渗透率下降相对较慢.同时,由于泥岩强度较粉砂岩强度更大,支撑剂嵌入深度较低,使得在同等条件下,泥岩储层比砂岩储层的人工裂缝渗透率更大.  相似文献   

10.
应用PDP-200脉冲衰减法渗透率仪对涪陵页岩气藏产气层系龙马溪组页岩露头进行渗透率应力敏感性评价,采用定围压-降内压和定内压-升围压的方法对同一块具有水平层理缝的岩样进行渗透率测试。结果表明:随着作用在页岩上的有效应力的增大,页岩测试渗透率呈指数规律递减,递减过程按递减指数大小分为2段,分别体现了页岩裂缝渗透率的应力敏感性和页岩基质渗透率的应力敏感性;同时,定围压测试较定内压测试页岩渗透率不能马上恢复,存在一定的滞后效应,并且定内压测试时得到的裂缝闭合压力要比定围压测试时有所降低。龙马溪组页岩露头表现出双重介质特征,并且在内压卸载时造成了无法恢复的渗透率塑性损伤。  相似文献   

11.
低渗透油藏具有应力敏感性强、启动压力梯度等非线性渗流特征,对油井产能的预测也因此变得十分困难。综合考虑储层裂缝发育、应力敏感性、启动压力梯度以及流体的微可压缩性等因素,运用非线性渗流理论,建立了低渗透油藏垂直裂缝井的非线性稳定渗流模型,运用保角变换得到模型的解析解。结合埕岛油田埕北32东营组低渗透油藏开发实例,研究结果表明:油井产能随裂缝半长的增大而增加,随应力敏感系数的增大而降低。在生产压差小于2 MPa时,裂缝半长和应力敏感系数对产能的影响并不明显;采油指数随着生产压差的增加出现大幅下降。当生产压差超过2 MPa,裂缝半长和应力敏感系数的影响将变得十分显著,裂缝半长增大到6倍,油井产能相应增加为2.5倍,应力敏感系数增大到10倍,油井产能相应下降为1/2;而采油指数的下降将变得比较平缓,直至最后趋于稳定或略有上升的趋势。对CB32A-3、CB32A-4两口压裂井产能进行预测,预测误差在10%以内,测算结果具有较高的精度。  相似文献   

12.
应力敏感作用对低渗透储层的渗流有重要的影响。为了明确微裂隙低渗透储层的应力敏感特征,首先分析了储层的变形机理;然后通过改变孔隙压力实验,模拟测定微裂隙低渗透储层的应力敏感特征;最后分析了应力敏感对生产的影响。研究表明:超低渗透研究区微裂隙比较发育,使其储层砂岩具有应力敏感特征;渗透率模数能够较好的描述研究区的介质变形特征;孔隙压力降低,超低渗透岩心渗透率下降幅度远远高于其它各类储层岩心,表明油藏开发过程中,超低渗储层介质变形非常严重。随着生产压差增大,超低渗介质变形油藏单井产能随之增加,油井开采过程中,选择合理的生产压差是减小介质变形对油井产能造成伤害的关键。  相似文献   

13.
消除滑脱效应的致密砂岩储层应力敏感评价   总被引:1,自引:1,他引:0  
室内评价储层岩石应力敏感程度多采用气体渗透率作为评价参数,而致密砂岩储层岩性致密,孔喉细小,受气体滑脱效应的影响,所测气体渗透率偏高,导致致密砂岩储层应力敏感程度被低估。针对常规方法导致致密砂岩储层应力敏感程度被低估的问题,以鄂尔多斯盆地镇泾油田长8致密砂岩储层为例,采用等价液测渗透率作为评价储层应力敏感的参数,消除了气体滑脱效应对实验结果的影响;并结合平面径向流理论,分析了应力敏感对产能的影响。结果显示,采用气测渗透率低估了致密砂岩储层岩石应力敏感的程度;并且岩心渗透率越低、有效应力越大、低估程度越严重;随有效应力的增加,致密砂岩岩心的气测渗透率、等价液测渗透率均呈先快速降低后缓慢降低的趋势,渗透率变化率与有效应力之间呈幂函数关系;应力敏感现象导致生产井井底附近存在"渗透率漏斗";并且储层渗透率越低、生产井井底压力越低,"渗透率漏斗"越深,延伸的范围越广,应力敏感对产能的影响越大。  相似文献   

14.
为了建立油气开采过程中,储层渗透率随温度、孔隙压力变化而改变的定量评价模型,假定岩石仅产生弹性变形,根据多孔介质弹性力学理论,推导出岩石孔隙体积和尺寸的应力-应变关系;再应用管流模拟渗流,根据Kozeny-Carman方程得到渗透率随温度、孔隙压力变化的定量计算模型.针对常规渗透率测试存在的问题,改进实验方法,模拟真实储层温度压力条件,开展了岩心力学和渗透率同步实验.研究结果表明,模型计算的渗透率损失与实验测试结果吻和良好.模型适用于裂缝不发育的致密岩石在弹性变形范围内的渗透率定量计算.随着油气采出,孔隙压力下降,导致渗透率减小,而地层温度降低,导致渗透率增大,这两方面对渗透率的影响具有相互抵消的作用.因此,由于温度、孔隙压力变化引起的储层岩石渗透率总体变化很小,一般不超过±2%.  相似文献   

15.
针对渤海典型稠油油藏的非均质特征,建立内置微电极二维纵向非均质物理模型。通过含油饱和度测量技术进行了稠油油藏注聚主要影响因素实验研究,考察了油藏纵向非均质性、注入速度、注入黏度对聚驱剩余油分布规律及开采效果的影响。实验结果表明:对于纵向非均质稠油油藏,随着渗透率级差增加,注聚效果变差,剩余油主要富集在中、低渗透层。提高注入速度等同提高了注采压差。当压力梯度大于中、低渗透层启动压力梯度以后,才能动用中、低渗透层油。为了增加中、低渗透油层的动用程度,可以考虑适当缩小井距或者通过封堵高渗层,提高中、低渗层注采压差。对于非均质严重的稠油油藏,考虑到油层的实际条件,单纯靠增加体系黏度不能满足流度控制需要,必须通过调、堵等措施才能达到流度控制的目的。  相似文献   

16.
宋春涛 《科学技术与工程》2012,12(25):6319-6326
利用应力敏感实验得到了低渗透油藏残余渗透率表达式;理论推导了考虑动态渗透率变化的启动压力梯度表达式,在此基础上,提出拟动力函数的概念得到了应力敏感和启动压力综合作用下的油水相渗曲线。然后利用Eclipse软件,通过引入ROCKTABH和Threshold Pressure关键字实现了考虑启动压力和应力敏感效应的低渗透油藏数值模拟研究方法。研究结果表明:考虑启动压力和应力敏感效应后,由于油相流动能力变差,水相渗流能力相对增强,残余油饱和度升高的影响,注采井间压力梯度较大,含油饱和度下降较慢,无水采收期较短,含水率上升速度较快,最终采收率较低。  相似文献   

17.
致密油藏储层致密,地层压力系数一般较低,开发非常困难,而注水吞吐对补充油层压力和实现稳产具有明显优势.针对体积压裂致密油藏,采用嵌入式离散裂缝模型描述复杂体积压裂缝网,建立考虑应力敏感和启动压力梯度的致密油藏油水两相渗流模型,并采用有限体积法建立相应的数值求解方法.通过数值模拟方法模拟了12个吞吐轮次下单个压裂段致密油藏的开采过程,分析了基质和裂缝性质对致密油藏注水吞吐开发产能的影响.研究结果表明:当基质渗透率、微裂缝渗透率和微裂缝密度升高时,基质中含水饱和度波及范围变大,累积采油量显著升高;水力裂缝渗透率升高对基质含水饱和度分布影响不大,但累积采油量明显上升,而当水力裂缝上升到一定程度时,累积采油量上升幅度变小.可见基质和裂缝性质对致密油藏注水吞吐开发效果均有显著的影响.  相似文献   

18.
页岩气储存在自生自储的纳米级孔隙中,压裂成为页岩气开发的重要技术。在考虑了多尺度非达西渗流机理的基础上,建立了多种流态多尺度渗流模型,求出考虑有限裂缝流动的页岩气藏压裂井稳态产能方程,在该模型中充分考虑了孔隙尺寸对Knudsen扩散系数的影响,并探索了滑脱现象、Knudsen扩散系数DK、渗透率K、裂缝半长Lf、裂缝穿透比Lf/Re与裂缝流动能力Kf·Wf对压裂井产能的影响规律。研究结果表明,渗透率修正因子ξ对产能的影响较大,以多尺度渗流模型确定的页岩气压裂井产能与实际生产数据非常稳合。当井底流压<15 MPa时,滑脱效应对压裂井产能的影响开始增强,并且随着滑脱因子增加,压裂井的产能随之增加;岩芯渗透率越低,Knudsen扩散系数DK和滑脱效应对产能影响越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号