首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t)) e(t), t∈(0,1)αx(0)-βx′(0)=∑m-2i=1aix(ξi), γx(1) δx′(1)=∑n-2j=1bjx(τj)解的存在性,其中f:[0,1]×R2R满足Caratheodory条件,e(·)∈L1(0,1),ai,bj∈R,ξi,τj∈(0,1),i=1,2,…,m-2,j=1,2,…,n-2,0<ξ1<ξ2<…<ξm-2<1,0<τ1<τ2<…<τn-2<1.  相似文献   

2.
本文研究有限奇异Hankel矩阵的相容多项式与最小度.按定义,非零多项式f(z)=■f_jz~j为n阶Hankel矩阵H=(h_(i+j))■的相容多项式,假如■[f]_n=0,这里[f]_n=(f_0,…,f_n)~■与~■=(h_(i+j))~■每个n阶Hankel矩阵H均可由某个有理函数g/f(degg≤degf)生成:H=H_n(g/f),如果有degf=q,但不存在满足degg≤degf  相似文献   

3.
讨论了(0,1)-矩阵类 U(R,S)中所含指定的行和向量 R=(r_1,r_2,…,r_m),列和向量 S=(s_1,s_2,…,s_n)的(0,1)-矩阵的势 f_(m,n)(R,S),给出了求 f_(m,n)(R,S)的递归公式.  相似文献   

4.
O.Perron曾经证明了这样一个定理:若复数域上的线性齐次微分方程组:y_ i(t)=sum from to (n j=1) f_(ij)(t)y_j(t),0≤t<∞,i=1,…,n,(0)满足:(ⅰ)当i≠j时lim f_(ij)(t)=0;t→∞(ⅱ)存在正数C及t。使R_e[f_(j-1,j-1)(t)-f_(jj)(t)]≥C对t≥t。及2≤j≤n成立,那末,方程组(0)的解的第j个特征数λ_j=■ 1/t integral from n=0 to t(Re f_(jj)(τ)dτ,j=1,…,n.)关于这个定理,某些微分方程方面的著作给出了详细的介绍,例如[1.pp.132-146],[2.pp.187-193],等等。本文则推广了这个定理,取消了上述两个对f_(ij)(t)的较为严格的限制条件而代之以一些较为宽容的条件。按照本文的结论,我们(ⅰ)不必要求t-∞时f_(ij)(t)→0,甚至不必要求f_(ij)(t)有界;(ⅱ)不必要求Re[f_(j-1,j-1)(t)-f_(jj)(t)]≥C对某一正数C及t≥t_o成立,甚至不必要求Re[f_(j-1,j-1)(t)-f_(jj)(t)]≥0在t≥t_o之后永远成立,但我们最后仍能根据系数矩阵(f_(ij)(t))给出方程组(0)的特征数的估计式。  相似文献   

5.
研究奇异三阶m点边值问题:u(t)=f(t,u(t),u′(t),u″(t))+e(t),0t1,u(0)=u′(0)=0,u′(1)=∑m-2i=1αiu′(ξi),C1[0,1]解的存在性。这里函数f:[0,1]×R3→R满足Carath啨odory条件,t(1-t)e(t)∈L1(0,1),αi∈R,ξi∈(0,1),(i=1,2,…,m-2)且0ξ1ξ2…ξm-21是给定常数。主要结果的证明基于Leray-Schauder延拓定理。  相似文献   

6.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n}),有aii.ajj>[αΛi(A)+(1-α)Si(A)].[αΛj(A)+(1-α)Sj(A)],则称A为严格α-双对角占优矩阵。首先推广严格α-双对角占优矩阵的概念到广义α-双对角占优矩阵;然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,进而可以判断非奇异H-矩阵,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。  相似文献   

7.
本文证明了定理 设F是一个特征为P的含P~a个元的有限域.f(x)=f_1(x)~l1…f_k(x)~lk是f(x)在多项式环F[x]中的标准分解式,f_i(x)是最高系数为1、次数为n_i的不可约多项式.那么f(x)有原根的充分必要条件为当p≥3时:k=1同时l_1=1,α及n_1为自然数或k=1同时l_1=2,α=n_1=1;当P=2,k=1时:l_1=1,α及n_1为自然数或l_1=2,α=n_1=1或l_1=3,α=n_1=1;当P=2,k>1时:α=1以及下面五种情形之一:一、f(x)=x~2f_1(x)…f_(k-1),这里(x,f_i(x))=1,(n_i,n_j)=1,i≠j;二、f(x)=(x+1)~2f_1(x)…f_(k-1)(x),这里(x+1,f_i(x))=1,(n_i,n_j)=1,i≠j;三、f(x)=x~3f_1(x)…f_(k-1)(x),这里(x,f_i(x))=1,(n_i,n_j)=1,i≠j;四、f(x)=(x+1)~3f_1(x)…f_(k-1)(x),这里(x+1,f_i(x))=1,(n_i,n_j)=1,i≠j;五、f(x)=f_1(x)…f_k(x),这里(n_i,n_j)=1,i≠j;  相似文献   

8.
本文引入了δ邻域差幅和二维δ—Spline函数的概念,给出下面的磨光公式,即对等间距节点(x_i,y_i)上的测值f_(i,j), 其中δ—函数的一次逼近。主要结果是下面的定理定理:(?)(x,y)是f_(i,j)在闭区域Q:x_1≤x≤x_M,y_1≤y≤y_N上的一个关于δ—差幅的2阶ε—Spline函数,其中ε=p q/3=pq/9,p=h/△x,q=h'/△y,a=(△x~2 △y~2)~(1/2). 应用到平面数值场得到九点平滑公式(?)_(i,j)=(1-p/3)(1-q/3)f_(i,j) p/6(1-q/3)(f_(i-1,j) f_(i 1,j)) q/6(1-p/3)(f_(i,j-1) f_(i,j 1)) pq/36(f_(i-1,j-1) f_(i-1,j 1) f_(i 1,j-1) f_(i 1,j 1))。  相似文献   

9.
设S={x1,x2,…,xn}是惟一分解整环R上的不同元素构成的集合,e≥1是一个正整数.(xi,xj)和[xi,xj]分别表示xi,xj的最大公因子和最小公倍数.S称为因子封闭集(简称FC集),如果对S中的任何元xi,它的任意一个因子是S中的一个元的相伴元.以(xi,xj)的P次方为i行j列元素的矩阵称为GCD幂矩阵,记为(S^e);以[xi,xj]的e次方为i行j列元素的矩阵称为LCM幂矩阵,记为[S^e].作者证明了若S是FC集,则(S^e)整除[S^e],即[S^e]等于(S^e)与R上另一个矩阵的乘积,推广了Bourque和Ligh在1992年所得的结果.  相似文献   

10.
设F是任意域,fij(i,j∈[n])是从F到自身的映射,Sn(F)是F上n阶对称矩阵全体所成集合,f是Sn(F)上由[fij]n诱导出的映射,本文研究Sn(F)上几种保秩1导出映射的形式.  相似文献   

11.
设R是个半质环,C是R的中心,f_i(x,y)(i=1,2)是关于m个x,n个y的乘积。本文之定理用比较简单的方法证明了下列之命题(Ⅰ)蕴含命题(Ⅱ): (Ⅰ)若对任何x,y∈R,均有f_1(x,y)—f_2(x,y)∈C,则R为交换环。 (Ⅱ)若对任何x,y∈R,均有f_1(x,y) f_2(x,y)∈C,则R为交换环。从而,给出了文献[5]、[8]、[9]若干定理的简短的证明。  相似文献   

12.
设 是区间[0,1]的一列分划;sp(3,△R)是对于分划△R 的三次样条函数空间,即若s(x),则s (x)i=0,1,…,NR-1;且 s(x)[0,1].记 对干连续函数[0,1] ,在sp(3,△k)中构造它的插值样条s(x),常见的三种,即三次周期型插值样条(若f(0)=f(1)的话)、三次自然型插值样条,(在[1]中称为(Ⅱ’)型插值样条)和三次(Ⅰ’)型插值样条(见[1] p94)。这三种样条在[2]中分别用插值算子L△Kf,N△Kf和S△Kf来表示,它们都是线性、幂等因而是投影算子。 I.J.Schoenberg[3] 曾提出过这样的问题:对于满足△k→0的分划列△R,是否对[0,1]上的一切连续函数f都有P△Kf-f…  相似文献   

13.
α-双对角占优与H矩阵的判定   总被引:10,自引:0,他引:10  
设A=(aij)∈Cn×n,若 α∈[0,1],使对 i≠j(i,j∈N)均有|aiiajj|≥(Λi,Λj)α(SiSj)1-α,则称A为α 双对角占优矩阵.本文利用矩阵回路给出了A为H阵的新的判定准则,即A=(aij)∈Cn×n,若对任意i∈N和v∈S(A)有:ΠΛi)α(ΠSi)1-α,α∈[0,1],则A为H阵,改进和推广了已有的结果.|aii|>(Πi∈νi∈νi∈ν  相似文献   

14.
设A=(aij)∈Cn×n,若存在α∈(0,1),使i≠j(i,j∈N={1,2,…,n}),有aiiajj>[αRi(A)+(1-α)Si(A)]×[αRj(A)+(1-α)Sj(A)],则称A为严格α-双对角占优矩阵。首先推广严格α-双对角占优矩阵的概念到广义α-双对角占优矩阵;然后得到了判别广义α-双对角占优矩阵的一个充分必要条件,改进和推广了已有的结论,进一步丰富和完善了α-双对角占优矩阵的理论。最后举例说明了所给结果的优越性。  相似文献   

15.
设实数矩阵C_n=(C_(ii))中C_ii=R_t(t=|i-i|,i,i=1,…,n 1,t==0,1,…,n),记号C_n≥0 (>0)表示C是半正定(正定)矩阵。本文绘出C_n是半正定矩阵的充要条件。在概率论中,平稳序列应用于气象、水文、地震等预报问题中,出现的协方差矩阵往往是半正定矩阵,因此就需要解决下面的一个问题: 设R_0,R_1,…,R_n是一串实数,组成形如下式的n 1阶对称矩阵:即当|i-i|=t时,C_(ii)=R_i(t=0,1,…,n;i,i,=1,…,n 1)。则当C_(n-1)为半正定矩阵时,R_n使C_n是半正定矩阵的充要条件是什么? 在[1]文中。已得到了当C_(n-1)为正定矩阵时的结果;在[2]文中,已得到了当C_(n-2)(n≥2)是正定矩阵,deiC_(n-1)=0时的结果。本文的目的是利用广义逆矩阵的性质,解决上面所提出的问题,即下面的定理1,2,而[2]、[1]文中的结果分别是它们的推论。容易看到,当R_0=0时,则C_n是半正定矩阵的充要条件是R_1=R_2=…=R=0,这时,没有多大意思,所以我们仅在R_0>0及n≥2的情况下进行讨论。  相似文献   

16.
本文在非共振条件下运用Leray-Shauder原理讨论二阶常微分方程m-点边值问题.u″(t)=f(t,u(t),u′(t))+e(t),t∈(0,1),u(0)=αu′(0),u(1)=∑m-2i=1aiu(ξi)解的存在性,其中e∈L1(0,1),α0,ai∈R且具有相同的符号,ξi∈(0,1),(i=1,2,…,m-2),0<ξ1<ξ2<…<ξm-2<1,f:[0,1]×R2→R连续.  相似文献   

17.
设S={x1,……,xn}是由n个不同正整数组成的集合,ε∈Z ,如果n阶矩阵的第i行j列元素是S中元xi,xj的最大公因数(xi,xj)的ε次幂(xi,xj)ε,就称这个矩阵是定义在S上的最大公因数的ε次幂矩阵,简记为(S)εn;如果n阶矩阵的第i行j列元素是S中元xi,xj的最小公因倍数[xi,xj]的ε次幂[xi,xj]ε,就称这个矩阵是定义在S上的最小公倍数的ε次幂矩阵,简记[S]εn为.如果S中元素满足1≤i≤j≤n有xi|xj,就称S是一个因子链.研究了对ε∈Z ,定义在任意因子链S上的幂矩阵(S)εn和[S]εn的行列式det(S)εn与det[S]εn间的整除性.  相似文献   

18.
令f_i(x)=f_i(x_1,x_2,…,x_n),i=0,1,…,m,为m 1个定义在区域x≥0上的函数,其中f_0(x)称为目标函数,其余称为约束函数。令R代表点集 此点集以后称为约束集。考虑问题 极大问题:在约束集R上,求目标函数f_0(x)的极大值。连系极大问题,考虑另一问题  相似文献   

19.
<正> 本文R始终表示有单位元的交换环。我们考虑系数在R中的线性方程组AX=B (1)在R上可解的条件,这里A=(a_(ij))是一个m×n矩阵,X=(x_1,…,x_n)~t,B=(b_1,…,b_m)~t。如果m>n,可以引入变量x_(n+1),…,x_m及a_(ij)=0(1≤i≤m,n+1≤j≤m)。因此,不失一般性,我们总可以假定m≤n。关于线性方程组AX=B有解的充分条件,文献[1]、[2]、[3]中针对一些  相似文献   

20.
对三角矩阵的存储映射问题进行了讨论.对于n阶下三角矩阵,若按行主顺序仅将下三角部分各元素依次存储到向量B[1∶n(n+1)/2]中,则可获得矩阵下标集合到向量下标集合的一个一一映射f(i,j)=i(i-1)/2+j,其逆映射为f-1(k)=(p,k-p(p-1)/2).这里i≥j且p=(8k+1-1)/2.对于上三角矩阵,若按列主顺序仅存上三角部分,则可对称地获得类似的一一映射:g(i,j)=f(j,i)=j(j-1)/2+i,g-1(k)=(k-p(p-1)/2,p),其中i j,p同前.一般地,对于对称矩阵,若仅如前地存储下三角部分或上三角部分,则得到一个多对一映射h∶h(i,j)=f(i,j)(若i j)或g(i,j)(若i相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号