首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了一类含临界指数的奇异双调和方程,通过Sobolev嵌入的最佳达到函数和精确的能量估计,运用山路引理得到了这类双调和方程非平凡解的存在性。  相似文献   

2.
研究了R ̄N上具有临界Sobolev指数的双调和方程,且非平凡解的存在性.这里a(x)≥0且;应用形变引理和拓扑度方法证明了当充分小时,上述方程至少有一个不变号的非平凡解.  相似文献   

3.
在有界光滑区域Ω?RN上研究临界半线性双调和方程Δ2u=λu+|u|q-2u,λ>0,u∈H0(1) (Ω)∩H2(Ω)非平凡解的存在性.利用极小极大原理和山路引理,证明方程所对应的泛函存在临界点,从而得到方程至少存在一个非平凡解的结论.  相似文献   

4.
5.
研究了一类含Soboiev临界指数的双调和椭圆方程组,通过精确的能量估计,运用山路引理得到了这类方程组非平凡解的存在性.  相似文献   

6.
本文利用山路引理证明了P—Laplace方程非平凡解的存在性,同时还给出了非存在性的结果.  相似文献   

7.
研究RN上一类含Sobolev-Hardy临界指数的椭圆方程,通过精确的能量估计和证明对应的能量泛函满足(PS)c条件,运用山路引理得到了这类方程非平凡解的存在性.  相似文献   

8.
研究了一类含Sobolev-Hardy临界指数与Hardy项的椭圆方程,通过证明局部(P.S.)条件和能量估计,运用山路引理得到了这类方程非平凡解的存在性.  相似文献   

9.
运用变分法和Sobolev不等式,研究了一类具有临界指数及奇异性的双调和椭圆方程,在一定条件下,得到了方程至少存在一个解的结果.  相似文献   

10.
利用一个新的对称山路引理研究一类具有临界非线性项的p-双调和方程,得到了该问题无穷多个非平凡解的存在性,并证明了这些解序列趋近于零.  相似文献   

11.
讨论如下含临界指数的双调和方程非平凡解的存在性{Δ2u=μ(u)/(|x|s) |u|2*-2u λu f(x), x∈Ω,u=((e)u)/((e)v)=0, x∈(e)Ω .其中Ω(∪)RN是有界光滑区域,0∈Ω, N≥5, 0≤s≤4,0≤μ<(-μ)=(N(N-4)/4)2,2*=(2N)/(N-4)为W2,2(Ω)中Sobolev嵌入的临界指数,u, v表示(e)Ω的外法线方向,f(x)为给定函数.通过变分方法,我们证明了含临界指数的双调和方程非平凡解的存在性.  相似文献   

12.
设Ω是RN(N≥5)中的有界光滑区域,0∈Ω,0≤s<4,2*(s):=2(N-s)/N-4是临界Sobolev-Hardy指数,f(x)是一个给定的函数.利用变分原理,证明了当f(x),λ,μ满足一定条件时,带有Dirichlet边值条件的奇异临界非齐次问题△2u-μu|x|4=|u|2*(s)-2/|x|su λu f(x)解的存在性.  相似文献   

13.
研究了在四维空间R4中球域B内的半线性奇异双调和方程的Dirichlet边值问题.其中,奇异项中不但含有通常的奇位势,还含有对数权,使得该奇异项成为R4空间中的临界位势.文中首先建立了相应的Hardy不等式,然后通过山路引理得出了该问题非平凡解的存在性.  相似文献   

14.
本文讨论非线性方程齐次Dirichlet问题  相似文献   

15.
利用Ekeland变分原理和临界点理论,借助亏格的概念和性质得到了带临界指数的奇异椭圆方程无穷多具有负能量的非平凡解的存在性.把Chen Jiangqing的结果折非奇异椭圆方程推广到了奇异椭圆方程中.  相似文献   

16.
文章运用变分方法及Hardy不等式讨论了椭圆方程:……Q,其中该方程满足条件u>0,x∈Ω和u=0,x∈Ω,并且……RN是包含0的有界光滑区域;并且对任一λ>0获得该方程解的存在性.  相似文献   

17.
给出了R_N中有界域Ω上临界增长拟线性椭圆型方程Dirichlet问题(N>P>1),P~=NP/(N-P)的非平凡解的存在性结果。  相似文献   

18.
李娟 《上海交通大学学报》2006,40(11):1991-1996,2002
研究了带有2个临界Sobolev指数的奇异拟线性椭圆型方程组.利用Sobolev-Hardy不等式、翻山引理和第二集中紧原理,在方程的系数和指数满足一定的条件下得到了方程正解的存在性结果.  相似文献   

19.
研究了一类带有多重临界Sobolev指数和Hardy项的椭圆方程组,运用变分方法和分析技巧,证明了方程组对于大范围参变量非平凡解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号