首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
支持向量机的关键在于获取分离超平面,先用感知机的迭代算法获取初始分离超平面,然后将初始分离超平面不断地旋转和平移,直至几何间隔达到最大且完全分离训练数据集,此时的分离超平面就近似支持向量机的分离超平面,分类效果最好,并使用分类数据进行检验,说明此方法有效。  相似文献   

2.
针对不同训练样本重要性的差异对模型推广能力的影响,提出了对各个样本的误差惩罚参数赋予不同权重的加权支持向量机求解路径算法.根据样本重要性的不同,利用分段线性插值得到加权系数,并通过加权系数调整求解路径,从而改变不同样本在回归模型中的作用.采用支持向量机加权求解路径算法对圆柱壳结构在不同边界条件下的时、频域响应数据进行预测,训练样本的重要性通过与测试样本的欧式距离来表达,结果显示所提算法可减小位移响应在多个评价指标下的预测误差,提高支持向量回归机的推广能力.该方法同样适用于其他求解路径算法,如λ-路径算法和ν-支持向量回归路径算法.  相似文献   

3.
支持向量机作为一种重要的机器学习工具,近年来受到了广泛的关注,并得以迅速发展.但在处理大数据时,求解支持向量机对应的二次规划问题是非常棘手的,计算时间长,存储空间大.如何有效求解支持向量机是一个不可回避的研究课题.本文主要研究了如何利用牛顿法求解支持向量机和双生支持向量机,并提出了两个新算法.实验结果表明,所提算法是有效和高效的.  相似文献   

4.
利用有效集求解的SVM策略,采用SOR方法求解相应的子问题,使得改进算法能有效处理大规模非线性可分的问题,证明了改进算法的有限终止性。提出了可将此改进算法应用到增量学习SVM中。  相似文献   

5.
支持向量机(SVM)是一种基于统计学习理论的机器学习方法,由于其优越的学习性能,已经成为当前模式识别、数据挖掘、大数据处理等机器学习领域的研究热点.查阅相关同类文章,发现其中对SVM理论中公式,如距离函数d、拉格朗日函数L(w,b,α)、二次凸优化函数f(x)等的来龙去脉缺少细致的阐述.本文对SVM理论中典型的线性最优二分类问题的求解进行了完整的推导,并给出了对岩屑岩性分类识别的结果,也为今后的非线性多类模式分解作出铺垫.  相似文献   

6.
支持向量机的训练算法   总被引:27,自引:0,他引:27  
大量数据下支持向量机(SVM)的训练算法是SVM研究的一个重要方向和广大研究者关注的焦点。该文回顾了近几年来这一领域的研究情况。该文从分析SVM训练问题的实质和难点出发,结合目前一些主要的SVM训练方法及它们之间的联系,重点阐述当前最有代表性的一种算法——序贯最小优化(SMO)算法及其改进算法。从中可以看到,包括SMO在内的分解算法通过求解一系列规模较小的子问题逐步逼近最优解,从而避免存储整个Hessian矩阵,是解决大规模SVM训练问题的主要方法。而工作集的选择对于分解算法的收敛与否和收敛速度至关重要。  相似文献   

7.
支持向量机的算法研究   总被引:1,自引:0,他引:1  
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析。并已成为国际机器学习界的研究热点。本文主要讨论其基本原理与SVM训练算法。  相似文献   

8.
支持向量机的算法研究   总被引:1,自引:0,他引:1  
支持向量机(support vector machine,SVM)是20世纪90年代发展起来的一种新型机器学习方法,是在统计学习理论基础上发展起来的一种新的数据挖掘方法,已广泛应用于模式识别与回归分析.并已成为国际机器学习界的研究热点.本文主要讨论其基本原理与SVM训练算法.  相似文献   

9.
针对传统支持向量机中存在原始数据量过大导致训练速度太慢的问题,同时考虑到非支持向量对支持向量机的训练性能无影响,且影响支持向量机性能的支持向量往往位于边界的特点,提出一种提取边界向量的支持向量机算法.数值实验表明:改进算法在保证支持向量机分类能力的前提下,有效提高了支持向量机的分类效率.  相似文献   

10.
支持向量机是一种新型通用的机器学习方法,已成为数据挖掘的一种强有力的工具.通过研究线性和非线性支持向量机的模型,给出若干常用的训练算法.  相似文献   

11.
本文介绍了目前流行的机器学习方法——支持向量机,详细论述了目前主要的支持向量机的训练算法,分析了它们各自的优缺点。最后对支持向量机训练算法今后的研究提出一些设想。  相似文献   

12.
基于与支持向量机最优化问题等价的互补模型,提出了LM算法.该算法无需计算矩阵的逆或H esse阵,计算量小,易于实现.并在一定条件下证明了算法的全局收敛性,数值实验表明所提出的算法是可行的.  相似文献   

13.
模糊孪生支持向量机通过为每个训练样本赋予不同的模糊隶属度来构建2个最优非平行分类面,以便减少噪声或孤立点对非平行分类面的影响,进一步提高了支持向量机的性能.本文结合超松弛迭代法对模糊孪生支持向量机进行了研究,通过迭代技术求解凸二次规划问题中的拉格朗日乘子,减少了支持向量机的训练时间,在UCI标准数据集上分别对C-FTSVM和v-FTSVM进行了实验研究,并对使用传统求拉格朗日乘子的方法与超松弛迭代(SOR)的方法进行了对比,表明了使用超松弛迭代法不仅在时间性能上得到了提高,而且其分类正确率也优于传统的方法.  相似文献   

14.
支持向量机增量学习算法研究   总被引:1,自引:0,他引:1  
给出了使用多支持向量机进行增量学习的算法.传统的支持向量机不具有增量学习性能,而常用的增量学习方法各具有不同的优缺点,基于固定划分和过间隔技术,提出了使用多支持向量机进行增量学习的算法;使用此算法,针对标准数据集BUPA及用NDC生成的数据集OUTTRAIN进行了实验,结果表明,使用单一的支持向量机进行增量学习,不论采用过间隔还是固定划分技术,其增量学习的正确率不及使用多支持向量机增量学习算法的正确率.  相似文献   

15.
支持向量机增量学习算法综述   总被引:2,自引:0,他引:2  
支持向量机增量学习算法,有效的解决了因数据集庞大而引起的内存不足问题,改善了因出现新样本而造成原分类器分类精度降低、分类时间延长的局面。本文阐述了几种具有代表性的增量学习算法,比较了它们的优缺点,给出了进一步的研究方向。  相似文献   

16.
特征提取是人脸识别问题中的一个普遍问题,主要是指通过变换将图像空间中的人脸转化到人脸特征空间中,其目的是用最少的数据量表示原始图像的最多的信息.其中Fisher脸法是常用的特征提取方法,本文采用Fisher脸法和支持向量机的方法,构造了一个能够将图像数据空间的人脸映射到人脸特征空间中,并实施识别的实验系统.分析了该系统的构成与特点,并给出了实验测试结果.  相似文献   

17.
并行支持向量机算法及其应用   总被引:5,自引:0,他引:5  
针对当前支持向量机计算效率的不足,提出了改进的并行支持向量机技术.该算法能有效使内积运算、向量数据更新、矩阵向量实现并行计算,并且数据之间的通信时间能和向量更新时间重叠,从而提高了计算效率,并能保证泛化能力.数据仿真结果表明,与改进前的算法相比,2 500个样本下能节省时间30%左右,样本量增大时,效果更为明显.  相似文献   

18.
在核函数基础上,提出了一种融合支持向量机和核主元分析的核PCA支持向量机综合集成分类方法,给出了算法实现步骤。仿真实验表明了该算法具有很好的分类性能,特别适合于消除噪声情形的模式识别问题。  相似文献   

19.
针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的训练集问题,为开发适应大样本的训练算法,利用LS-SVM(Least Square Support Vector Machines),提出了一种自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVMLight在支持向量数量方面进行了比较,计算了UCI(University of California-Irvine)中的6个数据集和著名的Checkboard问题。结果表明,该自适应迭代算法确定的支持向量数一般不到SVMLight所得到的支持向量数的一半,其中70%多的支持向量被SVMLight所确定的支持向量集所包含,在支持向量选择方面具有高效性。  相似文献   

20.
自适应迭代算法支持向量集的特性研究   总被引:1,自引:0,他引:1  
针对在支持向量机研究中,传统的优化方法无法处理规模不断扩大的分类问题,为设计适应大样本分类的训练算法,提出了基于块的自适应迭代算法。在该算法的训练过程中,块增量学习和逆学习交替进行,能够自动得到一个小的支持向量集。将该算法与SVML ight在支持向量数量方面进行了比较,计算了UC I(Un i-versity of Californ ia-Irvine)中的6个数据集和著名的Checkboard问题。结果表明:该自适应迭代算法确定的支持向量数一般不到SVML ight所得到的支持向量数的一半,其中70%多的支持向量被SVML ight所确定的支持向量集所包含,在支持向量选择方面具有高效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号