首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
离散粒子群优化算法研究综述   总被引:4,自引:0,他引:4       下载免费PDF全文
粒子群优化(PSO)算法最初是基于连续空间的优化,然而现实世界中许多问题是离散的,近年来其离散化策略和方法受到广泛的关注.本文简要介绍PSO算法的工作原理和粒子更新机制、算法参数的分析与设置,详细介绍PSO算法的三种常见离散化策略的机理及其粒子更新机制,阐述离散PSO算法的应用成果,最后对其未来的研究方向进行展望.  相似文献   

2.
提出了离散三群粒子群优化算法(DTHSPSO),该算法将整个粒子群分为三群,第1群粒子朝全局历史最优方向飞行,第2群粒子朝着相反方向飞行,第3群粒子在全局历史最优位置周围随机飞行。粒子的速度保持连续性,对于粒子位置的处理采用两种方法:一是通过传递函数,根据速度的大小进行离散化;二是直接通过强硬限制函数(Hardlim函数)将位置离散化。通过对两种离散函数进行测试与比较,表明两种DTHSPSO都比基本离散粒子群优化算法(DPSO)具有更好的优化性能,而且直接采用Hardlim函数的DTHSPSO算法效果更加突出。  相似文献   

3.
为提高海洋钻机的工作效率和平台的空间利用率,应用改进的粒子群算法对海洋钻机系统进行布局优化研究。针对多目标、多约束的钻机系统布局优化问题,建立钻机系统布局优化数学模型,应用多目标粒子群算法直接求解,得出相应的最优解集。利用线性加权法将多目标转变为单目标进行求解分析,针对单目标粒子群算法的缺点,基于约束条件、惯性权重以及遗传算法的选择和杂交对粒子群算法进行改进,完成不同改进算法的测试实验。结果表明,在应用粒子群算法求解布局问题时将约束条件作为目标函数、单独引入遗传算法的杂交思想求解速度和精度更好。提出的基于杂交的动态惯性权重粒子群算法的布局优化问题求解性能更优,得到的优化方案符合海洋钻井作业要求且占用甲板面积较小。  相似文献   

4.
改进混合离散粒子群的多种优化策略算法   总被引:4,自引:0,他引:4  
针对离散粒子群算法求解旅行商问题,根据组合优化问题和离散量的特点,改进离散粒子群算法更新的运动方程.对离散粒子群算法分别加入逆转变异优化策略、受蚁群启示的变异优化策略和近邻搜索变异优化策略3种优化变异优化策略,使其成为新的混合离散粒子群算法,最后对3种混合离散粒子群算法进行比较,并剖析仿真结果的本质.结果表明:3种优化策略在不同程度上都提高了离散粒子群算法的总体效果和收敛性能,其中,加入逆转变异优化策略的混合粒子群算法实现简单,时间代价较小;加入近邻搜索变异优化策略的混合粒子群算法不论是在最优值或稳定性方面表现最突出.  相似文献   

5.
通过分析现有的贝叶斯分类算法属性过程中存在的问题,对属性选择实质进行研究和抽象,提出了基于离散粒子群的贝叶斯分类算法,使用离散粒子群优化搜索完成其属性选择过程。算法使用一个搜索过程完成属性子集的选择,有效地避免了属性选择过程中的主观因素,实验结果表明该算法能够搜索出更有"价值"的属性子集,有更高的分类精确度。  相似文献   

6.
周静 《科技信息》2011,(22):I0214-I0214,I0216
教务排课问题庞大、复杂,是高校进行正常教学过程中的一个重要环节,直接影响到教学资源及教学质量。排课问题要满足各种约束条件,比如教师资源、教室资源、课程、班级、上课时间等。在这些约束下,寻求一种优化组合,生成相对比较科学、合理、能充分利用现有资源并尽可能让教师和学生满意的课程安排表,将教学有秩序高效地进行。针对这种组合问题,本文提出了一种改进的离散群算法。  相似文献   

7.
离散型粒子群优化(DPSO)算法具有收敛速度快、参数少、能够适用于动态环境的能力等优点。借鉴已有的基于粒子群算法的分类系统,以离散型PSO为基础构建分类系统,在操作的过程中使用变长的方法来表示粒子,对法则集进行合理的表示并进行适当的删减,使用预设法则来提高分类效果等。通过实验证明,系统能够正确对法则进行删减并使用较少的法则数目达到理想的分类准确率,该分类系统具有较好的性能。  相似文献   

8.
文章提出了一种基于离散粒子群优化算法的块匹配运动估计算法.该算法将块匹配运动估计的局域性搜索与离散粒子群算法的全局性搜索结合起来,并针对运动矢量的特点,采用了Gray码编码、运动矢量预测以及有效的迭代提前终止准则等策略,克服了以往快速搜索算法容易落入局部最优的问题,在获得与全搜索算法相近的搜索精度的同时,降低了平均搜索...  相似文献   

9.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度.  相似文献   

10.
提出了两种改进的粒子群优化算法--引入了"预筛选"机制的PSPS0和线性改变最大速度vmax的LCVPSO,仿真实验表明,PSPSO和LCVPSO比标准PSO算法具有更好的性能.  相似文献   

11.
基于离散粒子群算法的城市物流节点选址模型   总被引:1,自引:0,他引:1  
在考虑城市物流系统运行费用最小的基础上构建了城市物流节点的选址模型,使用离散粒子群优化算法对该模型进行求解,算例分析表明该算法计算效率较高且易于实现,在求解城市物流节点选址问题时可以快速搜索到问题的最优解,具有较高的达优率.  相似文献   

12.
文化粒子群优化算法   总被引:3,自引:0,他引:3  
为了提高粒子群优化(PSO)算法的计算精度和计算效率,避免"早熟",给出了文化粒子群优化算法.该算法模型将PSO纳入文化算法框架,组成基于PSO的主群体空间和知识空间,两空间具有各自群体并独立并行演化.下层主群体空间定期贡献精英个体给上层知识空间,上层知识空间经演化后,定期贡献精英个体给下层主群体空间,于是形成"双演化双促进"机制,从而实现增加PSO的群体多样性.在以卫星舱和印刷电路板布局设计为背景的算例中进行了数值验证,结果表明对于该算例,该方法的计算精度和计算效率比遗传算法、PSO算法高.  相似文献   

13.
基于混合粒子群算法的通用导弹固定平台布局优化   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现导弹运输的通用化保障,提高导弹运输装备的运输能力,设计了一种可以加装在越野车副车架上的新型通用导弹固定平台,满足固定机构布局面积达到最小的要求,从而减小对底盘上装空间的需求,降低底盘选型的难度.针对这一问题,在对基本粒子群算法中的惯性权重取值进行改进的基础上,利用模拟退火原理对粒子群算法每次迭代产生的全局最优解进行优化.经仿真实验验证,与基本粒子群算法相比,该混合算法搜索能力强、搜索精度高、收敛性好、优化效果明显,很好的解决了通用导弹固定平台的布局优化问题.  相似文献   

14.
指出造林规划设计问题实质是一个离散约束优化问题。应用离散粒子群优化算法求解目标函数,以保证解的合理性法和惩罚函数法相结合处理约束条件。分析实例表明,离散粒子群优化算法可用来优化造林规划设计方案,与模拟退火算法比较,效果更好。此研究结果可为科学造林和最优化经营管理提供新思路,丰富粒子群应用领域。  相似文献   

15.
为克服粒子群算法在求解复杂的多峰问题时极易陷入局部最优解的缺陷,作者提出一种基于模拟退火的改进粒子群算法(PSOBSA).在PSOBSA算法中,每间隔若干代,对粒子的历史最优位置进行变异操作,以产生新的粒子;并采用模拟退火的思想,允许新产生的粒子的目标函数值在有限范围内变化;最后采用一种广义的学习策略提升种群收敛的概率.在基准函数的测试中,结果显示PSOBSA算法比基本PSO算法有更好的性能.  相似文献   

16.
粒子群算法是一种新型的进化计算方法,已在许多领域得到了广泛的应用,但基本粒子群算法在计算过程中易出现过早收敛现象.为此提出了一种改进的粒子群算法,利用差异演化的思想,当陷入局部极小点时,通过一定的策略迫使粒子群摆脱局部极小点.对经典函数的测试计算,验证了方法的正确性和有效性.  相似文献   

17.
一种改进的粒子群优化算法   总被引:2,自引:1,他引:2       下载免费PDF全文
提出了一种改进的PSO(粒子群优化)算法,该算法在基本PSO算法的粒子位置更新公式中增加了一个积分控制项,积分控制项根据每个粒子的适应值决定粒子位置的变化,改善了PSO算法摆脱局部极小点的能力。另外,在该算法中粒子行为是基于个体极值中心点和全局极值点确定的,这使得粒子能够获得更多的信息量来调整自身状态。用3个基准函数对新算法进行了实验,结果表明新算法优于已有的一些改进PSO算法。  相似文献   

18.
为了提升公共空间主功能区布局合理性,提出基于量子粒子群算法的公共空间主功能区布局优化设计方法。将城市公共空间不同功能区测绘数据分为空间数据和非空间数据,进行数据转换处理。利用深度神经网络提取公共空间主功能区空间分布特征;建立公共空间主功能区布局优化设计模型,将复杂的布局问题转换为模型形式,并设置模型约束条件;基于量子粒子群算法求解布局优化模型,实现公共空间主功能区布局优化设计。测试结果表明,该方法能够对公共空间主功能区布局进行合理的优化设计,设计效果较好。  相似文献   

19.
改进的混沌粒子群优化算法   总被引:2,自引:0,他引:2  
针对传统的简单粒子群算法(SPSO)早熟、易陷入局部最优的缺陷,提出了一种改进的混沌粒子群优化算法(CPSO)。该算法根据混沌算法遍历性的特点,选择合适的混沌映射提取SPSO初始种群,使粒子均匀分布在解空间。当SPSO陷入早熟时,CPSO在最优解周围的区域内进行混沌搜索,取代原来种群中的部分粒子,带领种群跳出局部最优。对7个标准测试函数的寻优测试表明:CPSO算法在寻优精度、速度、稳定性等方面均优于SPSO。  相似文献   

20.
针对标准粒子群算法存在的局部最优、早熟和慢收敛等问题,提出了一种新的粒子群更新方法。改进了算法惯性权重,引入一种新的更新方式;借鉴蜣螂优化算法中蜣螂滚球、繁殖、觅食和偷窃行为,将基本粒子群的操作划分为寻优、变异、波动和跳跃,从而提高了算法的全局寻优能力和收敛速度,并避免了早熟问题。通过与其他9种智能算法进行实验对比表明,在10个基准测试函数中,基于蜣螂优化的改进粒子群算法在寻优能力和收敛速度方面表现出色,证实了该算法的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号