首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于卷积神经网络对颅内组织器官疾病诊断提出了创新思路.选取帕金森病患者图像通过灰度映射、直方图均衡化、改进的小波去噪、图像增强等预处理,以VGG-Net网络模型为基础设计并搭建卷积神经网络,采取正则化策略避免过拟合问题,用患者MRI图像集对网络模型进行5次十折交叉验证,同时通过反卷积网络实现特征可视化,挖掘疾病潜在特征.实验结果和客观评价表明,本文搭建的网络可根据患者MRI图像实现良好的辅助诊断.  相似文献   

2.
针对计算机辅助乳腺疾病诊断方法准确率低、耗时长等问题,提出一种基于改进的卷积神经网络(CNN)的乳腺疾病诊断方法.该方法从以下3个方面做了改进:(1)设计双通道卷积神经网络来解决单通道特征提取不充分的问题;(2)采用Dropout技术有效地防止过拟合现象;(3)采用支持向量机(SVM)代替传统的Softmax分类器以减少运算量,提高运算速度.测试结果表明:所提出的分类模型平均准确率高达92.31%,平均训练时间为968s,充分验证了该方法的有效性.  相似文献   

3.
为了研究Gabor滤波器在卷积神经网络中的性能和特征提取能力,提出了模拟视觉神经元特性的Gabor卷积神经网络计算模型.利用符合视觉神经元感知特性的Gabor滤波器作为建议神经网络的卷积核,将Gabor滤波器与CNN相结合,从而构建Gabor卷积神经网络.实验采用3个公共图像数据集进行图像分类任务,验证GaborCon...  相似文献   

4.
在显微镜下分析岩石薄片并对其进行分类时,人工鉴定效率较低且易受主观因素影响,为此提出了一种基于卷积神经网络深度学习的岩石粒度自动分类方法。该方法通过卷积网络模型实现图像特征自动提取,并同时建立模式分类器,实现基于薄片图像的粒度自动识别。采用鄂尔多斯盆地的4 800样品对卷积网络模型进行训练,通过1 200个样品对模型测试,测试集分类结果的准确度达到98.5%。理论分析与数据验证说明,通过深度学习所建立的卷积网络模型能够基于岩石薄片图像获得高效、准确、可靠的自动分类结果。  相似文献   

5.
6.
针对合成孔径雷达(synthetic aperture radar,SAR)图像的目标分类,传统的卷积神经网络(convolutional neural network,CNN)需要大量的数据样本进行训练,无法在小样本条件下进行,其应用受到限制。提出将胶囊神经网络(capsule network,Capsnet)算法用于SAR雷达图像的分类,针对小样本SAR数据集对Capsnet结构进行轻量化设计,并在MSTAR数据集上验证了该算法的有效性。结果表明,与CNN相比,基于Capsnet的SAR目标分类抗过拟合性强,泛化效果较好,具有更高的准确性,能够很好地实现SAR图像样本的分类。  相似文献   

7.
随着消费观念的升级,人们对饮食健康越来越重视,因此,食品图像识别成为众多领域研究的热点.针对传统食品图像识别方法提取特征能力差、准确率差等问题,采用Google团队发布的卷积神经网络模型——Inception_ResNet_V2模型对食品图像进行识别和分类,该模型曾经在图像分类测试中实现了当下最好的成绩.在Food-1...  相似文献   

8.
针对现有图书页面检索方法检索精度低的问题,利用任务无关数据集训练卷积神经网络,提出了一种基于卷积神经网络的图书页面检索方法.首先将待检图书页面图像进行图像分割和畸变校正,降低背景的干扰和几何畸变的影响;然后将校正后的图像输入卷积神经网络提取图像特征;最后使用夹角余弦距离来度量待检图像和候选图像的相似度.实验结果表明:本方法在测试数据集上的Top-5命中率为97.31%,而直接使用任务无关数据集训练的卷积神经网络的Top-5命中率仅为58.47%.本方法避免了耗费大量的时间和精力去收集大规模图书页面图像数据库,而且利用卷积神经网络强大的图像特征描述能力,取得了优异的图书页面检索精度.  相似文献   

9.
针对病理图像中细胞核的精准分割问题,结合全卷积网络框架和高分辨率网络框架的特点,提出一种卷积网络对细胞核进行自动精准地分割;基于稀疏非负矩阵分解的方法将具有严重颜色分布差异的病理图像进行颜色分布归一化,以归一化后的图像为输入,利用所提出的卷积网络对细胞核进行分割;该网络通过减少下采样算子的使用,使图像信息在前向计算过程中不会过分丢失,并使用扩张卷积扩大深层神经元的局部感受野尺度大小;所采用的分割方案在2017年MICCAI病理数字图像分割数据集中达到0. 848的平均dice分数;实验表明,融合全卷积网络框架和高分辨率网络框架的卷积网络在病理图像中实现了细胞核自动精准的分割,可以有效减轻影像医师的工作负担。  相似文献   

10.
针对Gatys的图像风格迁移算法做了两个方面的改进,首先提出了一种更加适用于风格迁移的卷积网络结构,相较于其他的预训练卷积神经网络模型减少了95%的参数数量,降低了22%以上算法运行时间;其次对风格迁移的风格损失函数部分做了改进,可以使一幅内容图像同时迁移多种不同的画作风格.  相似文献   

11.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于抗噪多核卷积神经网络(anti-noise multi-core convolutional neural network,AMCNN)的轴承故障识别新方法。首先,对滚动轴承振动信号进行预处理,得到数据样本,分为训练集和测试集;然后建立轴承寿命状态识别模型,将标签化的训练集数据样本输入AMCNN中进行训练;最后,将训练后的AMCNN模型应用于测试集,输出故障识别结果。在训练过程中,为抑制过拟合,对原始训练样本进行加噪处理;为提高模型抗干扰能力,将dropout层作为AMCNN的第一层。运用轴承实验数据对识别模型进行检验,通过对比验证,结果表明所提出的识别方法在高噪声环境下能更准确地实现轴承故障状态识别。  相似文献   

12.
针对已提出的很多烟雾检测方法中都是基于手工制作的特征或者使用原始图片直接作为神经网络的输入,减少了深度学习的鲁棒性。为解决这些问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的烟雾检测方法。使用图片归一化方式消除光照的影响,利用烟雾颜色检测烟雾候选区域,CNN自动提取烟雾候选区域的特征,进行烟雾识别,根据分类结果得到报警信号。针对烟雾产生初期烟雾区域相对较小的问题,利用扩大候选区域的策略提高烟雾检测的及时性。由于训练数据少或不平衡引起的过度拟合,使用数据增强技术从原始数据集生成更多训练样本解决该问题。实验结果表明,该方法能有效地检测烟雾,且具有更高的准确率和更好的鲁棒性。  相似文献   

13.
卷积神经网络随着深度和结果复杂度的不断增加,其参数量和计算量大大制约了它的应用场景,本文在SueezeNet网络结构基础上引用分组卷积并采用Channel-shuffel来解决分组卷积后的信息不流通问题。以减少原有网络结构的的参数量提高网络运行效率。在ORL数据集的验证表现也表明,在网络参数减少的情况下分类精度和收敛效率并不会有降低甚至略有提高。可以体现分组卷积在结构轻量化上的有效性。  相似文献   

14.
对图像进行预处理,用卷积神经网络的方法训练数据集及调整参数,建立坑洼检测模型.实验结果表明:本算法的执行效果好于直接进行坑洼检测的方式,为道路坑洼检测提供了良好的解决方案.  相似文献   

15.
环境感知技术是智能车功能实现的前提,而在感知的基础上提高智能车对环境的认知能力是实现全自动驾驶的关键。本文针对室外交通场景,基于卷积神经网络提出了一种新的智能车同时定位以及语义地图构建方法,对智能车进行定位,并且构建稠密的3D语义地图,提高智能车的环境感知、认知能力。首先,基于双目ORB-SLAM提出了一种四线程的双目SLAM(Simultaneous Localization and Mapping)方法构建稠密的3D点云地图,四线程分别为追踪线程,局部地图构建线程,回环检测线程以及稠密地图构建线程;其次,为提高智能车的环境认知能力,使用端对端的方法对图像进行语义分割,并且为提高语义分割精确率,将环境的几何信息也作为卷积神经网络输入;最后,将感知的能力与认知的能力相结合构建语义地图,为智能车实现全自动驾驶奠定基础。本文将算法在KITTI数据集上进行测试,整体算法速度为10帧/秒,语义分割的全局精确率为73.1%,构建的语义地图显示本文提出算法能够在大规模室外场景下重构全局一致性地图,并且帮助智能车实现对环境的解析。  相似文献   

16.
为了提高卷积神经网络(CNN)的泛化性和鲁棒性,改善无人机航行时识别目标图像的精度,提出了一种CNN与概率神经网络(PNN)相结合的混合模型。利用CNN提取多层图像表示,使用PNN提取特征对图像进行分类以替代CNN内部的BP神经网络,采用均方差和降梯度法训练模型,通过将预处理的图像传输到CNN-PNN模型,对图像纹理和轮廓进行分类识别,并将此模型的仿真结果与卷积神经网络模型、卷积神经网络-支持向量机模型的结果进行对比。仿真结果表明,与其他两种模型相比,CNN-PNN模型具有更好的精准度,识别率高达96.30%。因此,CNN-PNN模型能够快速有效地识别图像,准确度和实时性较高,在图像识别等方面具有很好的应用前景。  相似文献   

17.
在密集场景中,人流量统计往往因无法可靠地检测行人而使得统计精度不高.针对这一问题,在利用卷积神经网络技术基础上,采用基于头部检测的方法进行人流量统计.该方法采用级联的Adaboost检测器对人头目标进行初步筛选,再用迁移学习技术训练卷积神经网络,并用由卷积神经网络和支持向量机构成的人头分类器模型对初步筛选得到的人头目标进行精细识别,提高检测精度率,利用航迹关联对人头目标进行跟踪统计.实验结果表明,该方法能准确快速地定位到单个行人并具有较高的统计精度.  相似文献   

18.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。  相似文献   

19.
复杂电能质量扰动的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。本文采用深度学习算法,将具有关注全局信息的Transformer与善于提取局部特征的卷积神经网络相融合,提出了一种基于卷积神经网络与Transformer的电能质量扰动分类方法,即CTranCBA。这种双深度学习模型分类方法主要是通过一维卷积神经网络提取电能质量扰动信号特征,利用Transformer自注意力机制引导模型关注序列中不同位置间的依赖关系,实现对扰动信号局部特征与全局特征的互补,克服了因感受野的限制而带来的识别不清、分类不准等问题。本文使用了23种不同电能质量扰动信号,将CTranCBA与Deep-CNN、CNN-LSTM、CNN-CBAM方法进行比较,结果表明该方法在分类准确率和抗噪性方面表现优异,可为电能质量扰动智能分类提供一种新的方法。  相似文献   

20.
袁野  宗学军  何戡  连莲 《科学技术与工程》2023,23(12):5170-5175
为解决传统入侵检测算法无法准确识别过程控制攻击的问题,提出一种基于改进胶囊网络的过程控制攻击检测方法。该算法利用多层卷积在提取复杂输入特征方面的优势,将原始流量转化为灰度图像进行初级特征提取;同时引入残差连接以解决梯度消失问题,利用胶囊网络特有的动态路由机制对初级特征进行聚类。使用2017 QUT_S7comm数据集进行实验。结果表明:所提方法在测试集上的准确率可达94.64%,在验证集上对各类攻击的识别准确率均在90%以上,实验证明所提方法可以有效预防针对工控系统的过程控制攻击。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号