首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对锂离子电池的容量恢复现象导致的剩余寿命预测精度不高的问题,提出了一种锂离子电池的多状态模型剩余寿命预测方法.首先通过分析锂电池的衰退数据将锂离子电池的退化过程分为正常退化、容量恢复和加速退化三种状态,然后分别对三种状态的退化过程进行建模并验证了模型的有效性,将3种状态的模型组合得到锂离子电池多状态容量衰退模型.然后...  相似文献   

2.
针对锂离子电池实际应用中存在不完全充放电而导致的充电起始点及截止点不确定问题,提出一种基于双充电状态因子的电池健康状态估计方法.搭建电池老化实验台架,采用8块镍钴锰锂离子电池进行老化实验;区别于传统单状态因子估计,选取不同老化阶段下恒压充电状态前端等时间差的电流平均值,以及恒流充电状态末端等幅值电压的充电时间构造健康因...  相似文献   

3.
为了准确地预测锂离子电池剩余寿命,创新性地用无迹卡尔曼、遗传算法和粒子滤波算法融合得到的融合方法研究了锂离子电池剩余寿命预测。用无迹卡尔曼算法的滤波结果所构造的建议分布代替标准粒子滤波算法中的重要性密度函数,用遗传算法的选择、交叉和变异过程代替其重采样过程,将3种算法相融合,用于电池的剩余寿命预测。结果表明,相较于标准粒子滤波算法的估算结果,所提的融合方法有效地降低了粒子退化程度,并抑制粒子多样性丧失,其对电池剩余寿命预测的误差更小,更接近实际值。用该融合方法预测锂离子电池剩余寿命时有更高的精确性和适用性。  相似文献   

4.
粒子滤波在锂离子电池剩余寿命预测中的应用   总被引:1,自引:0,他引:1  
为有效预测锂离子电池剩余寿命,引入了粒子滤波算法.对粒子滤波的基本概念和算法实现步骤进行介绍,在给出锂离子电池寿命统计数据的基础上,应用粒子滤波算法计算其剩余寿命,解决了锂离子电池剩余寿命预测的问题.对相同的锂离子电池统计数据,利用扩展卡尔曼滤波方法计算进行对比实验.分析结果表明:粒子滤波算法比扩展卡尔曼滤波算法可靠,能较好地预测出锂离子电池的剩余寿命,误差小于5%.  相似文献   

5.
锂离子电池内部结构复杂,受外界影响大,使其容量退化过程具有不确定性因素而呈现随机性.对电池容量退化服从非线性维纳过程建立状态空间模型,并认为参数是服从共轭分布的随机变量,增加了模型不确定性使之更加符合锂离子电池容量的退化过程.利用自助法获得先验分布参数初始值,由共轭分布的性质可以得到后验分布的类型,由此得到简便的参数估计方法.粒子滤波可对每一时刻的参数及退化状态进行估计和更新,根据提前设定的状态阈值可以预测电池的剩余寿命.具体实例验证了方法的准确性,该方法对可靠性高、样本量少的电池的剩余寿命预测有借鉴意义.  相似文献   

6.
针对锂离子电池剩余使用寿命预测中机理模型建立复杂、数值求解困难,而纯数据驱动方法通用性不强的问题,提出了一种基于高斯拟合模型和粒子滤波算法相结合的半经验融合预测方法。首先设计并实现锂离子电池寿命衰减实验采集多组数据,其次利用MATLAB工具进行数据预处理并利用高斯拟合方法建立寿命衰减规律描述公式,再基于此建立寿命衰减状态空间模型和观测模型,最后利用粒子滤波算法进行跟踪预测。结果表明此预测方法能达到小于5%的预测精度。  相似文献   

7.
锂离子电池因其循环寿命产生的问题更加被重视。为了对锂离子电池的剩余循环使用寿命进行预测研究,采用了粒子滤波算法。首先对粒子滤波算法进行了概述。然后用它对电池的剩余使用寿命预测。简要描述了3组电池数据下的实验;并与扩展卡尔曼滤波进行了对比实验分析。实验结果表明了粒子滤波算法在3组数据下的绝对误差平均值近似4%,均方根误差平均值近似5%,扩展卡尔曼滤波的绝对误差平均值和均方根误差平均值分别近似6%和7%。说明了粒子滤波在锂离子电池剩余使用寿命预测中比扩展卡尔曼滤波精度更高。  相似文献   

8.
针对锂离子电池在线剩余寿命预测时容量难以直接测量以及预测表达的不确定性等问题,提出一种利用锂离子电池充放电监测参数构建剩余寿命预测健康因子的方法框架,实现了锂电池健康状态的表征,同时利用高斯过程回归(Gaussian process regression,GPR)方法给出剩余寿命预测的不确定性区间,从而构建了锂离子电池在线剩余寿命预测的方法体系。基于NASA锂离子电池数据集和卫星锂离子试验数据的剩余寿命预测验证和评估实验,表明本文提出的方法框架可以很好地支撑电池在线剩余寿命预测的应用,具备较好的电池剩余寿命预测精度和不确定性管理能力。  相似文献   

9.
针对锂离子电池退化过程中不可避免的容量再生现象建立了电池退化模型,提出了融合粒子滤波(PF)和高斯过程回归(GPR)的电池剩余使用寿命(RUL)预测算法。仿真实验结果表明,所提出的算法能够实现准确的锂离子电池RUL预测。  相似文献   

10.
目的 健康状态是评估锂离子电池状态的关键参数,对锂离子电池的安全使用有着十分重要的意义,为了获得准确可靠的健康状态估计结果,建立基于卷积神经网络和Transformer的锂离子电池健康状态估计方法,利用不同模型的数据挖掘特性,将健康指标的深层信息和随循环周期增加的时序信息并行提取。方法 从锂离子电池放电过程中的部分电压和温度曲线中提取3个与健康状态相关性较强的健康指标作为模型输入,利用卷积神经网络强大的特征提取能力挖掘健康指标的局部特征,利用Transformer的顺序处理能力挖掘健康指标的时序特征,将健康指标的局部特征和时序特征进行特征融合,通过卷积和全局平均池化层输出健康状态估计值。结果 本研究使用MIT数据集进行实验验证,并与卷积神经网络和长短时记忆神经网络进行对比分析,所提出的方法的均方根误差和平均绝对误差是最低的,为0.11和0.08,最小相对误差为0.61%。结论 所提出的CNN-Transformer健康状态估计采用不同模型挖掘健康指标不同的特征信息,能够充分利用锂离子电池放电数据,且具有良好的估计效果。  相似文献   

11.
目前基于数据驱动的锂离子电池RUL预测方法不能较好地适应于同类型不同电池的RUL预测,且预测精度易受健康因子冗余或不足的影响.针对以上问题,提出一种结合主成分分析(PCA)特征融合与非线性自回归(NARX)神经网络的锂离子电池RUL间接预测框架.首先提取多个能反映电池性能退化的可测参数,并将PCA去除冗余后的结果作为预测健康因子;然后利用一组电池的全寿命数据构建基于NARX神经网络的健康因子和容量预测模型,对同类型不同电池预测时将该电池寿命前期健康因子作为输入,即可间接预测出其RUL.最后实验结果表明所提框架在同类型不同电池RUL的预测中精度较高且适应性较强.   相似文献   

12.
粒子滤波算法本身存在着粒子退化问题,对于衰减趋势变化剧烈的模型,难以获得精确的预测结果,限制了算法的适用范围。针对以上问题对粒子滤波进行改进,通过引入粒子群优化算法中的粒子更新机制,优化粒子的全局位置信息,进而重新分配各粒子权重,降低了重采样阶段粒子重置的比例,改善了算法固有的粒子退化现象,达到改进算法、提升算法预测性能的目的;同时,为验证算法的实际效果,以马里兰大学先进寿命周期工程中心(CALCE)发布的锂电池容量实验数据集为基础,分别使用传统粒子滤波算法与改进的算法进行剩余寿命预测仿真。经过对比发现:改进算法误差下降33.6%,可获得更为精确的预测结果,重采样率下降18.3%,粒子退化问题得到改善。  相似文献   

13.
准确预测锂离子动力电池的剩余使用寿命(remaining useful life, RUL),确保相关行业和设施的可靠性和安全性具有重要意义。数据驱动方法仅通过实验数据总结电池性能参数变化规律从而预测电池剩余寿命,突破了传统基于模型方法精度低、难以建模、通用性差的局限。首先针对基于数据驱动的锂离子动力电池寿命预测的研究进行分析,归纳总结出锂离子动力电池寿命预测建模思路。其次,分类阐述了各种基于数据驱动的预测方法,并对其优缺点进行了分析。最后,给出了锂离子动力电池剩余寿命预测的发展趋势。  相似文献   

14.
针对传统的预测方法不能同时考虑线性和非线性退化问题,提出了一种基于维纳过程的带随机参数和确定参数的混合退化模型.基于首达时间(FHT)的概念给出了剩余寿命(RUL)的解析渐进显式形式,模型中随机参数通过Kalman滤波技术实时更新,确定参数采用极大似然估计进行估计.最后,采用陀螺仪实验数据验证了该方法的有效性.  相似文献   

15.
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。  相似文献   

16.
针对目前大多数基于人工智能的轴承剩余使用寿命(remaining useful life,RUL)预测方法不能很好地预测不同工况下轴承剩余寿命的问题,提出了一种基于迁移学习的寿命预测方法,对不同工况下的轴承进行剩余寿命预测.对采集的轴承原始振动信号进行傅里叶变换得到频域信号,以卷积神经网络和长短时记忆网络作为特征提取器...  相似文献   

17.
针对民航发动机寿命预测中监测参数较多筛选困难的问题,提出一种基于信息融合与相关向量机的发动机剩余寿命预测方法。首先通过核主元分析方法从发动机多维监测数据中提取退化特征信息;然后利用非线性模型将主元序列融合成反映发动机退化趋势的健康指数序列;最后采用相关向量机以历史失效数据为训练样本建立预测模型,对现有的发动机健康指数序列进行外推预测得到当前样本的寿命预测值。通过NASA Ames研究中心公开的涡轮风扇发动机仿真数据验证了该方法的有效性,其预测性能优于常用的支持向量机模型和过程神经网络模型。  相似文献   

18.
针对滚动轴承退化数据的复杂性和传统的寿命预测方法不能充分利用数据的相关性从而导致预测精度不高的问题,提出了一种基于融合深度置信神经网络(deep belief neural , DBN)和长短时记忆神经网络(long-short term memory , LSTM)的剩余寿命预测模型。该模型首先采用带通滤波降噪对滚动轴承振动数据进行去噪,然后依据均方根特征和峭度特征在轴承全寿命周期内的趋势图确定模型的预测起始点;其次利用优化后的4层DBN网络完成深度特征提取并用于LSTM的训练与测试。通过轴承全寿命周期试验证明提出模型的可靠性,并且与传统LSTM、BP(back propagation)神经网络和DBN-BP模型的预测结果进行对比,验证了本文模型的有效性。  相似文献   

19.
针对航空发动机传感器监测的退化参数提取困难,易受噪声干扰及发动机剩余使用寿命预测精度不足等问题,利用最大信息系数、贝叶斯优化算法和类别特征梯度提升算法,提出了一种新的发动机剩余使用寿命预测模型。首先,为有效解决特征提取不足的问题,对采集的传感器历史监测特征进行最大信息系数相关性计算,提取出对发动机寿命运行周期影响较大的关键退化特征。其次,为解决剩余使用寿命预测中的梯度偏差及预测偏移问题,使用基于贝叶斯优化的类别特征梯度提升方法对航空发动机进行剩余使用寿命预测。最后,在美国航空航天局提供的商用模块化航空推进系统仿真数据集上进行实验,结果表明所提预测方法的性能较好,验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号