首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
应用晶化非晶硅(a—Si)薄膜铝诱导方法,采用X射线衍射(X-ray diffraction,XRD)、光学显微镜(Optical Microscopy,OM)和原子力显微镜(Atomic Force Microscopy,AFM)等测试手段,研究了退火条件对样品晶化的影响.结果表明,样品在300℃下退火后仍为非晶态;退火温度为400℃时,样品开始晶化.随着退火时间的增加,薄膜晶化程度越来越高,晶粒越来越大,同时薄膜表面粗糙度增加.  相似文献   

2.
在镀铝 (0 .5~ 4μm)的玻璃基底上用射频辉光放电化学气相沉积法沉积 1~ 4μm厚的α- Si薄膜 (基底沉积温度为 30 0℃ ,沉积速率为 1 .0μm/h) ,然后样品在共熔温度下、 N2 气保护中热退火 ,可使其快速晶化成多晶硅薄膜 .结果表明 :在铝薄膜的诱导下 α- Si薄膜在温度 550℃附近退火 5min即可达到晶化 ,X-射线衍射分析显示样品退火 30 min形成的硅层基本全部晶化 ,且具有良好的晶化质量 .  相似文献   

3.
采用磁控溅射技术首先在玻璃基片、单晶硅片上溅射非晶硅薄膜再在其表面溅射铝膜,并用快速退火炉在不同温度下进行退火。利用台阶仪、拉曼散射光谱(Raman)仪和X射线衍射(XRD)仪对薄膜进行性能表征。结果表明:在功率120W,气压1.5~2.5pa,时间为3.5~4.5h的条件下可制备得非晶硅薄膜,Al诱导能降低晶化温度,并在500~600℃间存在一最佳晶化温度。  相似文献   

4.
采用磁控溅射(Magnetron Sputtering,MS)方法,研究了不同的退火温度及铝的沉积温度对非晶硅薄膜晶化的影响.通过扫描电子显微镜(SEM)对不同温度沉积的铝薄膜表面结构及形貌进行了分析;并利用光学显微镜,拉曼散射仪(RAMAN)对退火后的薄膜表面形态和结构进行了分析.实验结果表明:适当温度退火可以有效提高对非晶硅的诱导作用,提高铝膜的沉积温度对于非晶硅薄膜晶化有促进作用;在650℃的退火温度下增加铝的沉积温度可显著提高非晶硅的晶化效果.  相似文献   

5.
采用玻璃/氢化非晶硅(a—Si:H)以吕结构,在低温(≤350℃)下,应用铝诱导晶化法(AIC),形成了纳米硅(nc-Si).利用X射线衍射(XRD)光谱、拉曼(Raman)光谱和紫外可见近红外光谱(UVVis—NIR),研究了退火升温时间对a—Si:H薄膜的结构及其光学特性的影响.结果表明,随着退火升温时间的增加,廿Si:H膜的晶化率X。增加而硅晶粒尺寸基本不变,光吸收系数α增加.这主要是由于铝和氢化非晶硅膜之间的氧化层很薄以及退火升温导致Al—Si之间的互扩散增强,使硅的成核密度很高和扩散到a-Si:H膜中的铝浓度较高造成的。  相似文献   

6.
从PECVD法制取的n~+与n/n~+两种结构的a-Si:H试样,采用低温退火固相晶化工艺,得到了满足器件质量要求的大晶粒多晶硅膜。测试结果证实:在N_2气氛下,经6—10h的600℃(或800℃)温度的退火后,两种a-Si:H膜均已明显地晶化.测得了晶化膜的粒径>lμm,暗电导率、光电导率均比退火前增加了3个数量级,迁移率则增加了10—80倍。  相似文献   

7.
非晶硅的二步快速退火固相晶化   总被引:3,自引:0,他引:3  
我们采用二步退火法,对由等离子增强化学汽相淀积法(PECVD)制备的a-Si:H膜进行退火处理,并观察了其晶化效果,由于二步快速退火方式与通常固相晶化退火法相比可大大缩短退火时间,因此具有较大的应用潜力。  相似文献   

8.
介绍一种使用快速热退火设备,经多次循环退火诱导,在普通玻璃衬底上生长非晶硅薄膜晶化的实验方法.利用拉曼(Raman)光谱、原子力显微镜(atomic force microscope,AFM)、紫外可见分光光度计(UV-VISspectrophotometer)和霍尔(Hall)测试系统对薄膜的结构、形貌及电子迁移率进行测试.结果表明,当退火温度达到680℃时,薄膜开始出现晶化现象;随着快速热退火次数的增加,拉曼光谱在500 cm-1处测得多晶硅特征峰;在循环退火5次后,其最佳晶化率达到71.9%,光学带隙下降,晶粒增大,载流子迁移率提高.  相似文献   

9.
采用磁控溅射方法沉积了Al/Si薄膜,通过自然氧化形成中间层,再结合快速光热退火制备出微晶硅.研究了铝诱导非晶硅晶化的两个热力学过程:Si的扩散和Si的形核长大.利用拉曼散射光谱仪和X射线衍射仪对薄膜进行了结构表征.结果表明:在铝诱导非晶硅的晶化过程中引入中间氧化层,有利于改善晶化效果,获得晶粒较大且结构均匀的薄膜;低温下,温度对Si的扩散起决定作用,过厚的氧化层会阻碍Si的扩散,使其浓度不能达到临界形核浓度,无法使非晶硅晶化;较大的Al晶粒及Al对Si晶粒的"润湿"能在低温下诱导非晶硅晶化.  相似文献   

10.
以K〔Al(OH)4〕对硅胶进行铝化。用XPS(光电子能谱)、IR(红外)、MASNMR(魔角核磁共振)以及异戊醇脱水反应表征了铝化胶样品。结果表明,硅胶经后可以产生Bronsted和Lewis酸性。Bronsted酸性的产生不排除K〔Al(OH)4)〕与硅胶表面羟基综合并在以后的热处理中转化为六配位的铝氧化物,从而显示lewis酸性。铝化硅胶由于具备了酸性,产生了醇脱水的催化活性。  相似文献   

11.
采用丙酮、四氢呋喃、乙酸丁酯和四氯化碳等有机溶剂对双酚A聚碳酸酯(BAPC)进行诱导结晶.结果表明,在丙酮诱导的起始阶段,非晶态BAPC结晶能力得到极大的提高,结晶度迅速提高.四氢呋喃诱导结晶能力次之,诱导结晶速度和结晶度均小于丙酮诱导结果.乙酸丁酯的诱导能力更弱一些,结晶度和晶片厚度均小于丙酮和四氢呋喃的诱导结果.而四氯化碳对BAPC的诱导结晶能力差.  相似文献   

12.
为了能定性定量解释金属诱导非晶硅薄膜结晶实验中所遇到的一系列现象 ,提出一套扩散诱导结晶模型 ,成功地解释现有实验中的各种现象  相似文献   

13.
利用差示扫描热分析法(DSC)和X射线衍射仪(XRD),并借助Kempen模型和Kissinger方程,研究了不同加热速率下Cu45 Zr45 Ag7Al3非晶合金晶化过程及非等温晶化动力学.在连续加热条件下,随升温速率的加快,Cu45Zr45Ag7Al3非晶合金的特征温度Tg,Tx和Tp均向高温区移动,且过冷液相区间扩大.计算了该合金的激活能,分别为Eg=431.1kJ/mol,Ex=307.2 kJ/mol和Ep=339.5 kJ/mol;并计算出相应的Avrami指数n(分别为5.2和1.9),表明该非晶合金的晶化是以界面控制的多晶型晶化为主.  相似文献   

14.
 使用355 nm YAG皮秒脉冲激光对250 nm厚的非晶硅薄膜进行激光晶化的研究,并利用金相显微镜、拉曼光谱和X射线能谱(EDS: energy dispersive spectrometer)等对晶化样品进行了分析。结果表明:随着激光脉冲能量的增加,完全熔区和部分熔区的宽度均明显增大。在所研究的脉冲能量范围内(15 μJ—860 μJ),所有样品的完全熔区的拉曼光谱均无非晶硅或晶体硅的特征峰,而位于完全熔区边缘的部分熔区的拉曼光谱却显示出晶体硅的特征峰,这可能是因为完全熔区接受到的激光能流密度过大,造成区内绝大部分非晶硅薄膜气化蒸发。这个推测进一步得到了X射线能谱分析结果的证实。X射线能谱分析结果表明,完全熔区的成份主要是玻璃与硅反应生成的硅化物,其表面被二氧化硅层所覆盖。  相似文献   

15.
利用X射线衍射(XRD)研究了高能球磨条件下非晶Fe73.5Cu1NB3Si13.5b9合金的机械诱发纳米晶化过程,并根据化学成分偏聚、局域高压、局域高温以及Johnson-Mehl-Avrami(JMA)晶化动力学模型解释了纳米晶化的过程和机制.研究结果表明:非晶Fe73.5Cu1Nb3Si13.5B9合金机械诱发纳米晶化的产物为复杂的α-Fe固溶体和稳定的Fe2B金属间化合物,α-Fe固溶体相晶粒尺寸为2.0-6.5nm,其纳米晶化过程和晶化产物是由化学成分富集、碰撞引起的局域高压和局域高温共同作用的结果;机械诱发纳米晶化过程中的Avrami指数n=1.59,动力学反应速率常数k=0.1287h^-1,表明机械诱发纳米晶化过程中形核机制为均匀形核,晶粒生长机制为从小尺寸晶核开始的三维生长.  相似文献   

16.
介绍了强变形固溶现象及其研究发展过程、铝合金强变形固溶研究中有待解决的基本问题和强变形固溶铝合金的时效特性.同时,指出了铝合金强变形固溶的应用前景.  相似文献   

17.
在非晶Fe78B13Si9合金的结晶动力学分析的基础上,选择不同的退火工艺对其进行晶化处理,以制备纳米晶合金。对退处理后的Fe78B13Si9合金的结构和微观组织进行了X射线衍射和电子显微分析。  相似文献   

18.
非晶Fe77.5Si8.5B14合金晶化动力学的非等温方法研究   总被引:5,自引:0,他引:5  
利用非等温差示扫描热分析法(DSC)研究了非晶Fe77.5Si8.5B14合金的晶化动力学.不同升温速率的DSC曲线表明非晶Fe77.5Si8.5B14合金的晶化过程为两步晶化.通过对不同升温速率的DSC曲线的分析,计算了两个析晶峰的晶化表观激活能E1(388.2 kJ·mol-1)和E2(339.0 kJ·mol-1),以及两个析晶峰的Avrami指数n1(1.7)和n2(3.3).根据动力学参数分析了非晶Fe77.5Si8.5B14合金的析晶机理晶化峰1的成核类型为均匀成核,晶粒生长为扩散控制的一维生长和二维生长;晶化峰2为整体析晶,晶粒生长以界面控制的二维生长和三维生长为主.最后结合表观激活能计算了两个析晶反应的频率因子ν1(4.05×1025)和ν2(1.14×1021).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号