共查询到20条相似文献,搜索用时 62 毫秒
1.
为有效提升图像质量,提出一种基于图像退化模型和邻域嵌套的彩色图像超分辨率重建算法.通过退化模型在彩色空间上得出图像超分辨率重建训练集,并根据此训练集进行图像邻域分块.为了在训练过程中抑制噪声并锐化图像中的边缘信息,提取训练集亮度和梯度特征并进行特征融合.为了有效提升重建算法的自适应性,引入图像重建优化参数和边缘信息参数... 相似文献
2.
3.
针对传统单幅图像超分辨率重建算法未能充分利用浅层特征信息,忽略视觉目标中的空间结构信息,难以捕捉特征通道与高频特征信息之间的依赖关系,重建图像出现伪影、边缘模糊的问题,提出一种基于残差网络和注意力机制的图像超分辨率重建算法。该模型特征提取部分结合WDSR-B(Wider Activation Super-Resolution B)残差网络增强特征信息在网络中的流通,通过坐标注意力机制对特征参数加权,引导网络更好地重建高频特征,恢复图像细节。实验结果表明,4倍图像重建下,在Set5和Set14测试集上的峰值信噪比(PSNR:Peak Signal to Noise Ratio)为31.00 dB、28.96 dB,结构相似性(SSIM:Structural Similarity)为0.893、0.854,重建后的图像在细节、轮廓方面均表现更好,优于其他主流超分辨率重建算法。 相似文献
4.
针对目前数字图像采集传输过程中因受环境干扰出现低像素的图像,导致图像重建效果较差的问题,提出了基于多尺度残差的数字图像超分辨率重建算法。首先,采用双边滤波算法完成数字图像的去雾处理;其次,分类数字图像的亮度特征信息和色彩信息,采用距离阈值去噪方法分别对其进行去噪处理;并且设置多个尺寸的卷积核,将其引入图像特征提取过程中,获取数字图像特征,对其展开反向投影操作,在残差学习思想的基础上连接升采样和降采样过程提取的特征,实现数字图像超分辨率重建。实验结果表明,所提算法对图像重建的结构相似度高、峰值信噪比(PSNR:Peak Signal-to-Noise Ratio)高、重建效果好。 相似文献
5.
针对目前基于粗糙集模型的特征选择算法无法直接应用于数值型数据、必须经过离散化过程而造成决策信息丢失的问题,提出了一种基于邻域决策分辨率的特征选择算法。该算法根据邻域信息粒中决策分布与其分类能力间的关系,提出了邻域决策确定性(Nc)来衡量单个信息粒的决策分辨能力;并根据特征向量空间上所有信息粒所具有的Nc累加值,定义了邻域决策分辨率作为特征子集上决策可分辨性的量度,从而将名义型和数值型数据统一在同一特征选择算法框架下。仿真实验和实际应用的结果表明,该算法性能优于目前主流基于邻域粗糙集的特征选择方法。 相似文献
6.
对基于学习的领域嵌套超分辨率重建方法进行了有效改进,提出了一种基于分类预测器以及退化模型的图像超分辨率重建技术.首先,利用退化模型得到图像训练集,并基于邻域嵌套进行分块;其次,根据图像各自特点提取灰度和梯度特征,并进行特征融合,从而实现了训练过程中噪声信息的有效抑制及图像中边缘信息的锐化;然后,引入分类预测器的思想,设计了一种离线的分类预测器,对预测器进行离线训练,得出优化参数,从而大幅度减少了优化时间;最后,利用L2范数对低分辨率图像分块进行分类,将分块送入相应子预测器中进行快速超分辨率重建.实验结果表明,该算法具有良好的实时性和有效性. 相似文献
7.
为了提高图像超分辨率重建的效率与质量,考虑到高、低分辨率稀疏表示系数的不同,改进了锚定邻域回归算法,并结合半耦合字典学习算法提出了一种快速图像超分辨率重建算法.首先采用半耦合字典学习算法得到高分辨率字典、低分辨率字典及映射矩阵;再采用岭回归算法求解低分辨率稀疏表示系数,并根据高分辨率稀疏表示系数与低分辨率稀疏表示系数之间的映射关系,得到高分辨率稀疏表示系数;然后,根据输入图像块特征寻找字典中与其最相关的字典原子,计算该字典原子所对应的投影矩阵,进行超分辨率重建.仿真结果表明:提出的算法不仅在重建速度上表现更快,重建图像的质量也得到提高,在客观指标和主观效果上均取得更好的效果. 相似文献
8.
视频图像超分辨率增强技术具有重要的研究价值。文章在研究和分析小波变换理论的基础上提出了一种基于小波变换的图像超分辨率增强算法,该算法充分利用小波多分辨率分解思想,体现图像分辨率降低的自然过程;通过估计高分辨率小波系数,经插值逆变换可得到重构的高分辨率图像。实验结果证明该算法克服了传统的插值方法致使图像高频部分损失、细节被模糊的缺点,是超分辨率图像处理的一种行之有效的途径,具有一定的实用价值。 相似文献
9.
超分辨率重建是指由同一场景的低分辨率退化图像,运用相应的算法重建一幅清晰的高分辨率图像。然而,传统的基于插值、基于重建和基于学习的方法已很难获得进一步的突破。近年新兴的过完备稀疏表示是一种新的图像表示模型,它为解决超分辨率重建中的难点问题提供了新的思路。本文通过分析超分辨率技术的以往研究和最新进展,着重讨论了各算法在重构时的优缺点,并对未来超分辨率重建技术进行了展望。 相似文献
10.
针对实际拍摄的亚像素信息较少的低分辨率运动图像,重构图像通常较为模糊,甚至不能分辨。为此,提出一种新的基于残差神经网络的高强度运动超分辨率图像重构方法。令沿运动方向的亮度保持恒定,通过光流场匹配实现高强度运动图像的运动估计;根据运动估计结果和超分辨率重构的基本思想,将BP神经网络看作残差神经网络的基础建立残差神经网络,对残差神经网络进行训练,参照训练样本将经插值法放大若干倍的待重构高强度运动图像作为输入,将高分辨率图像和输入图像间的残差作为输出,把输入和输出累加获取超分辨率图像,实现若干放大倍数高强度运动超分辨率图像的重构。实验结果表明,所提方法运动估计准确,重构图像清晰、质量佳。 相似文献
11.
针对基于近邻嵌入的图像超分辨率重建,提出带约束的逐级放大策略来提高近邻保持率,改进重建效果,并对各级放大的图像用迭代反向投影约束进行修正,减少学习过程中可能出现的误差,保证每一级的解向着正确的方向演化.此外,为充分利用测试图像本身的信息,将由测试图像得到的在线训练集与由训练图像数据库得到的离线训练集串联,构成联合训练集,进一步改进算法的性能.实验表明,与现有的一些算法相比,文中算法无论在视觉效果还是客观评价上都获得了更好的结果. 相似文献
12.
利用像素点在邻域空间的线性嵌入关系作为先验约束来重构高分辨率(HR)人脸图像.算法从HR训练样本集中选择与输入人脸最相近的K个样本进行配准,并以配准后的样本作为参考,学习目标图像中像素点的局部嵌入系数.在学习过程中,算法通过自适应调整各参考样本的权重来减小配准误差的影响,并利用总变差最小化约束嵌入系数的平滑度.结合局部像素嵌入关系以及降质模型,算法可以在最大后验估计的框架下实现对目标人脸的超分辨率重构.实验表明,重建的HR图像拥有更加细腻、清晰的局部特征,其平均峰值信噪比和结构相似度分别比对比算法高出1.26dB和0.04. 相似文献
13.
为了提高超分辨率重建图像的质量,提出一种基于稀疏表示和小波变换的超分辨率重建算法.首先,将小波变换的多尺度性、多方向性与稀疏表示的灵活性相结合,构建一种双稀疏编码(DSC)模型,提高稀疏系数的精度.然后,在双稀疏编码模型中引入局部线性嵌入正则化项(LLER),以更好地保留图像的结构;在重建过程中,对输入的低分辨率图像进行小波分解,得到3幅不同方向的高频子图,并采用提出的模型对其进行重建.最后,利用逆小波得到最终的高分辨率图像.实验结果表明:与多种主流的超分辨率算法相比,文中算法无论在主观视觉效果还是在峰值信噪比和结构相似度两个客观评价指标上,都取得了更好的效果. 相似文献
14.
为解决低照度条件下低分辨率图像的超分辨率重建问题,提出一种基于改进超分辨率残差网络(super-resolution residual networks, SRResNet)深度学习网络的低照度图像超分辨率重建方法。通过将读取的图像下采样、亮度降低等处理生成低照度低分辨率图像,并将该图像与高分辨率图像作为数据对输入学习模型,以便改进SRResNet的训练数据对的生成方式,优化训练过程,从而构建面向单帧低照度彩色图像的基于改进SRResNet训练的超分辨率重建方法。实验结果表明:与现有流行的图像超分辨率重建方法相比,该方法的峰值信噪比(peak signal to noise ratio, PSNR)、结构相似性(structural similarity, SSIM)指标整体为最优,低照度环境下的超分辨率重建图像更为清晰明亮、细节更丰富,该方法训练出的深度学习网络的重建效果更好。 相似文献
15.
将改进的基于流形学习的超分辨率重建与基于梯度约束的正则化重建结合起来,提出一种新的单帧图像超分辨率重建算法.该算法首先针对基于流形学习的超分辨率重建,提出新的特征提取方法,联合归一化亮度与平稳小波变换细节子带系数两个特征矢量,提高重建性能;然后将学习得到的高分辨率图像作为初始估计,将其梯度作为目标梯度域,进行基于梯度约束的正则化重建,得到最终的高分辨率图像.与现有的一些算法相比,文中算法无论在视觉效果还是客观评价上都具有较好的重建性能. 相似文献
16.
提出基于K-最近邻算法的话务智能预测技术,利用机器学习算法从电信话务信息的历史数据中提取规律,从而预测未来的电信话务信息情况。在算法中根据时间间隔对样例的距离度量进行了特征加权。针对互联互通来话数据的实验表明,该算法具有良好的性能。 相似文献
17.
提出一种改进的二阶龙格-库塔超分辨率算法.首先,提出一种浅层共享编码器,以实现低分辨率图像的浅层特征提取.其次,提出一种深层特征学习单元,并与基于龙格-库塔方法的残差模块相融合,进而构建出一种基于深层特征的残差模块,以提升深层特征提取能力.实验结果表明:与主流超分辨率算法相比,文中算法在主观视觉效果和客观评价指标方面都具有更好的效果. 相似文献
18.
单一的支持向量机在建模时存在一定的局限性,对于复杂的实际数据,不能很好地提取其中的信息,导致模型泛化性能较差,为此提出基于K近邻的组合支持向量机方法。该方法首先采用简单距离分类方法对经过主元分析的样本数据进行分类,并采用K近邻算法得到支持向量机子模型的组合参数,进而建立起基于支持向量机的多模型。将该方法应用于双酚A生产过程中质量指标的软测量建模,仿真结果表明基于K近邻方法的支持向量机多模型建模可以有效提高模型的泛化性能,并验证了该算法的可行性和有效性。 相似文献
19.
为了提高重建图像的分辨率,提出一种改进的稀疏表示超分重建算法.在稀疏编码阶段,引入非局部相似正则化以改进稀疏编码目标函数,并通过非局部相似正则化获得图像非局部冗余,以保持图像边缘信息.为了进一步恢复图像的边缘细节信息,提出一种基于改进双边滤波的全局误差补偿模型,以实现重建图像的误差补偿.实验结果表明:与Bicubic,L1SR,SISR,ANR,NE+LS,NE+NNLS,NE+LLE和A+(16 atoms)等算法相比,无论在主观视觉效果,还是在峰值信噪比和结构相似性指标上,所提算法都有显著的提高. 相似文献
20.
牟廉明 《合肥工业大学学报(自然科学版)》2013,36(2):171-175
k局部凸包分类方法通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能,k子凸包分类方法通过克服k凸包分类对类数和样本环状分布的敏感性而改善了分类性能。但是,该方法仍然对样本距离度量方法敏感,并且在k邻域内不同类的样本数经常严重失衡,导致分类性能下降。针对上述问题,文章提出了一种邻域k凸包分类方法,并通过引入距离度量学习和集成学习技术来提高算法对样本空间度量的鲁棒性。大量实验表明,文中提出的基于度量学习的邻域k凸包集成方法具有显著的分类性能优势。 相似文献