首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
表面增强拉曼散射(SERS)光谱具有检测速度快,灵敏度高、样品预处理要求低等特点,在痕量有机污染物检测方面占据越来越重要的地位.本文分别用水热法和水溶液还原法制备得到MIL-101和Au纳米粒子,并利用静电相互作用制备得到MIL-101/Au复合纳米粒子.通过调节Au纳米粒子尺寸和MIL-101表面分布密度优化复合基底的SERS性能,探究了最优配比的复合基底对罗丹明6G(R6G)的检测限,低至10~(-11) M,证明MIL-101/Au复合纳米粒子对探针分子具有高灵敏度.并将其应用于持久性有机污染物的检测领域,对荧蒽的检测限可达10~(-9) M,而对3,3′,4,4′-四氯联苯(PCB-77)可达到10~(-5) M.  相似文献   

2.
利用电化学手段在氧化铟锡(ITO)导电玻璃表面成功制备了Rh纳米粒子,并发现包裹剂、支持电解质以及电化学参数对产物的形貌及尺寸有着显著影响.通过对上述参数的调控实现了Rh纳米粒子的形貌可控制备,得到了准球形、岛状以及片层状的Rh纳米粒子.此外对岛状Rh纳米粒子在表面增强拉曼光谱中的应用进行了研究.结果表明该种结构具有良好的表面增强拉曼活性.  相似文献   

3.
以甲基丙烯酸丁酯(BMA)为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,以正丙醇和1,4-丁二醇为二元致孔剂,在毛细管内由热引发进行原位聚合制备聚甲基丙烯酸酯毛细管整体柱.通过物理吸附作用将不同粒径的金纳米粒子(AuNPs)修饰在整体柱材料孔表面并用于表面增强拉曼散射(SERS)光谱分析.利用透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、扫描电子显微镜(SEM)对AuNPs形貌、吸收光谱及吸附AuNPs前后整体柱的形貌进行表征.以对巯基苯胺(PATP)为探针分子,采用波长为633nm的激发光作为激发光源,研究不同粒径AuNPs修饰的聚甲基丙烯酸酯整体柱的在柱表面增强拉曼光谱(SERS)性能.结果表明,该整体柱SERS基底具有良好的SERS增强效应.随着AuNPs粒径的增大,基底的SERS活性逐渐增强.  相似文献   

4.
提出了一种具有荧光/表面增强拉曼光散射(SERS)双成像能力的复合纳米粒子的简便制备方法.在银纳米粒子表面修饰上4-巯基吡啶,再在其表面包裹聚多巴胺膜并吸附罗丹明6G.选择合适的激发波长,获得了良好的细胞的荧光和SERS图像,研究了肿瘤细胞的荧光/SERS双成像与药物释放.这种具有荧光/SERS双成像能力的复合纳米粒子有望在生物体成像和药物控释等领域获得应用.  相似文献   

5.
以金、银纳米及Au@Ag、Au-Ag合金复合纳米粒子为基底,研究尼古丁分子的表面增强拉曼光谱,讨论分子在4种纳米粒子表面的作用方式及可能的吸附取向.结果表明,分子在金纳米和Au-Ag合金纳米粒子表面的吸附取向相同——垂直吸附,不同的是与金纳米粒子形成了稳定的N-Au键;由于银纳米粒子和Au@Ag核壳纳米粒子表面均富含大...  相似文献   

6.
利用电化学手段在氧化铟锡(ITO)导电玻璃表面成功制备了Rh纳米粒子,并发现包裹剂、支持电解质以及电化学参数对产物的形貌及尺寸有着显著影响.通过对上述参数的调控实现了Rh纳米粒子的形貌可控制备,得到了准球形、岛状以及片层状的Rh纳米粒子.此外对岛状Rh纳米粒子在表面增强拉曼光谱中的应用进行了研究.结果表明该种结构具有良好的表面增强拉曼活性.  相似文献   

7.
为获得具有三维高密度热点分布的SERS活性基底材料,提出一种高效构筑具有高密度热点效应基底材料的方法,即以气/液界面法组装制备聚(苯乙烯-co-N-异丙基丙烯酰胺)@聚丙烯酸(PSN@PAA)二维胶体晶体。通过离子溅射法组装纳米Au粒子层得到大面积沉积Au纳米粒子层的胶体晶体Au复合基底材料,再以PSN@PAA/Au复合膜为基底,利用水热法在其表面调控生长ZnO纳米棒结构。进一步在PSN@PAA/Au-ZnO表面组装纳米Au,获得具有三维高密度热点分布的PSN@PAA/Au-ZnO-Au活性基底材料。以罗丹明6G(R6G)分子为探针分子进行SERS性能研究,结果表明:拉曼信号强度随ZnO纳米棒高度的增加而增强。基底对罗丹明6G的检出限为10-10mol/L,主要拉曼峰强度的RSD约为10.23%,该基底具有很好的检测灵敏性和重复性。  相似文献   

8.
利用Langumir-Blodgett(LB)技术制备了单层的LB膜,通过自组装的方法将银颗粒组装到LB膜上,形成了成膜分子-银纳米粒子二维结构的复合LB膜。AFM和π—A曲线表明调节成膜分子的比例,银离子可以亚单层形式排列于基底表面。拉曼光谱研究表明,该基底显示出了良好的表面增强拉曼散射效应。  相似文献   

9.
利用电化学氧化,在氨介质中将石墨氧化剥离。通过光子相关光谱(PCS)、透射电镜(TEM)、选区电子衍射(SAD)、粉末X射线衍射(XRD)、傅立叶红外转换光谱(FTIR)、X射线光电子能谱(XPS)等分析表征,表明电解过程中石墨被剥离成50nm左右的颗粒,这些纳米颗粒以无定型的多层和单层结构并存。层片上含有石墨氧化后产生的含氧官能团,赋予其良好的亲水性并可稳定地分散于水介质中。  相似文献   

10.
采用激光刻蚀法在水溶液中分别制备了金纳米粒子和铜纳米粒子.通过电镜、原子力显微镜和紫外—可见吸收光谱对它们的结构和光学性质进行了表征.将所得纳米粒子沉积在铝片的表面,获得了具有良好拉曼增强效果的金属岛膜.利用表面增强拉曼散射对4-巯基吡啶在金、铜岛膜上的吸附特性进行了对比研究,推测出4-巯基吡啶在金岛膜上采用垂直于表面的吸附取向,在铜岛膜上具有倾斜于表面的吸附取向.  相似文献   

11.
12.
通过电化学沉积法制备出一种药片状银微纳结构。采用SEM和XRD等技术对所制备的银微纳结构进行了结构表征,并结合其结构特点对药片状银微纳结构的形成机制进行了初步探讨。单分子检测实验可知超低浓度的罗丹明6G(Rhodamine 6G,R6G),即10-10mol/L都可以检测到光谱信号,表明这种结构的纳米银可以作为良好的表面增强拉曼散射(surface-enhanced Raman scattering,SERS)的基底,其原因在于药片状纳米银具有层级结构,其表观自相似性赋予其良好的SERS活性。  相似文献   

13.
探索了两种多金属氧酸盐H4[PMo11VO40].28H2O和H12[K6MnMo9O38]纳米粒子的制备,并通过FTIR、XRD和TEM测试手段对其结构、粒子形状及大小进行了表征.结果表明纳米粒子基本保持原有的多阴离子骨架,且纳米粒子大小均一,平均粒径为10 nm.  相似文献   

14.
利用正四甲氧基硅在微乳液介质中的水解反应合成新型银 -二氧化硅核 -壳型复合纳米粒子 .通过化学反应调控 ,直径为 5~ 1 0 nm的金属银纳米粒子可以以单核或多核形式嵌入并分布于球型二氧化硅粒子中 .透射电子显微镜照片表明 ,该复合粒子具有高度均匀的粒径分布 .  相似文献   

15.
采用金纳米颗粒包覆了一层二氧化硅壳层作为实验材料,利用该核壳材料增强石墨烯量子点的拉曼信号,并实现了单颗粒增强.实验中,二氧化硅的厚度可以通过反应时间得到控制,该壳层可以增强金纳米颗粒的化学和物理稳定性.本文方法与使用纯金纳米颗粒增强石墨烯量子点拉曼信号相比,其拉曼信号强度增强了20%以上.  相似文献   

16.
表面增强拉曼光谱检测金纳米粒子表面配体取向   总被引:1,自引:0,他引:1       下载免费PDF全文
使用表面增强拉曼光谱研究了苯硫醚在不同曲率半径的金纳米粒子表面的取向差异。结果表明,金纳米粒子半径越小,其表面配体分子中的苯环越倾向与金粒子表面平行排列。  相似文献   

17.
Mg-Zn-Al-Fe型类水滑石纳米颗粒的制备及表征   总被引:2,自引:0,他引:2  
采用液相共沉淀法合成了 4种金属离子 (Mg Zn Al Fe)组成的类水滑石 (简称Mg Zn Al Fe HTlc) ,考察了n(Al Fe) n(Mg Zn Al Fe) (x)对化学组成、晶体结构、粒子形貌、BET比表面积和等电点 (IEP)等的影响 .结果表明 ,所合成样品为片状纳米颗粒 ,化学组成与原料配比基本一致 ,Mg和Zn的相对含量比原料配比略低 .在所研究条件下 ,x在 0 .2 2~ 0 .36范围内得到纯Mg Zn Al Fe HTlc ,x较高 ( 0 .5 2 )时的产品为非晶体 .Mg Zn Al Fe HTlc的六方晶格参数a和c、层间距、层间通道及IEP基本不随x变化 ;a值为 0 .30nm ,c值约为 2 .30nm ,层间距约为 0 .76 5nm ,层间通道约为 0 .2 8nm ,IEP约为 10 .8.平均晶粒度不随x变化 ,约为 18nm ;TEM法测得的平均粒度随x减小而减小 .BET比表面积随x减小而增大 .制备的Mg Zn Al Fe HTlc颗粒为多晶体  相似文献   

18.
本文通过4-氧杂-6,7-环硫庚基三甲氧基硅烷依次与气相法二氧化硅及水,三氯化铑反应,合成了聚-4-氧杂-6,7-环硫庚基硅氧烷铑配合物.研究了其对烯烃硅氧加成反应的性能.  相似文献   

19.
银纳米颗粒的合成与表面增强拉曼光谱   总被引:1,自引:0,他引:1  
采用传统水热法制备出尺寸单一的银纳米颗粒,其反应机理基于相转移和相分离机制.银纳米颗粒的乙醇溶液通过甩胶处理涂抹在清洗后的硅片表面.Rhodamine 6G分子被用为检测分子,发现该材料为具有表面增强拉曼散射活性的衬底材料,其较大的增强因子可归结为金属颗粒耦合增强机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号