首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本委员会接受 联合国教科文组织(UNESCO)的《人类基因组和人类权利的普遍宣言》和国际人类基因组组织(HUGO)的原则: ·承认人类基因组是人类共同遗产的一部分, ·坚持人权的国际规范, ·尊重参加者的价值、传统、文化和人格,以及 ·接受和坚持人的尊严和自由; 同意国际人类基因组组织(HUGO)的“关于遗传研究正当行为的声明”,“关于DNA取样:控制和获得的声明”,“关于克隆的声明”,和“关于利益分享的声明”。 本委员会根据上述原则和文件就人类基因组及其成果的应用达成如下共识: ·人类基因组的研究及其…  相似文献   

2.
生物信息学     
生物信息学(Bioinformatics)是一门生物学与信息学交叉而成的年轻学科,旨在研究生物系统与生物过程的信息量与信息流,以便支持人口与健康、农业生产、创新材料和资源环境等领域的研发计划。其中基因组信息学(genome informatics)、结构生物信息学(Structural Bioinformatics)和神经信息学(Neuroinformatics)是较热门的分支。生物信息学由数据库、应用软件和因特网三大要素组成。20世纪60年代,蛋白质氨基酸序列和蛋白质三维晶体结构测定成功后,出现存储与研究蛋白质序列信息与结构信息的工作,像美国女科学家Dayhoff建立了第一个分子生物学数据库“Atlas of protein sequence and structure”,亦即现今数据库PIR的前身;Zuckerkandl与Pauling提出运用蛋白质序列推断生物种族的进化历史以及Anfinsen根据核酸酶再折叠试验提出“氨基酸序列决定它的三维结构”原理。到70年代核酸序列测定已获成功,特别是Sanger等人开始病毒基因组的测序工作,吸引了众多计算机科学家、数学家和物理学家加盟,去实现数据在线采集与建立数据库以及数据检索、处理、分析、显示和流通等目的。经过近十年的努力,取得一批崭新成果,分别收录于1982年、1984年和1986年的《核酸研究》(Nucleic Acid Research)的特刊中。随后蛋白质序列库PIR与SwissProt,核酸序列库GenBank与EMBL以及蛋白质结构库相继出台服务。以上计算分子生物学工作和数据库建设为90年代诞生生物信息学准备了科技条件。1986年美国科学家Dulbecco在《科学》(Science)上发表题为《癌症研究的转折点——测定人类基因组序列》的文章,在科技界引起了强烈反应。经过激烈的辩论,终于在1990年公布了美国的人类基因组计划,随后形成国际人类基因组计划。在它的第一个五年计划中,第三项目标是基因组信息学,要求研发有效的数据库、应用软件和网络传输等信息技术,来支撑大规模图谱与测序以及诠释基因组信息。同年,召开了第一届国际生物信息学会议。在第二届国际会议上正式使用Bioinformatics一词。到2001年已是第10届会议,会议内容涉及序列和结构数据库、基因识别、基因组比较、基因组功能分析、DNA芯片信息学、分子进化和蛋白质组学等方面。还有每年一次的计算分子生物学会议,像国际计算分子生物学会议(RECOMB),生物计算太平洋会议和分子生物学智能系统国际会议(ISMB)等,是国际生物信息学界的盛会。我国的生物信息学工作是逐步地发展起来的。20世纪80年代初仅在中国科学院生物化学研究所与生物物理研究所和内蒙古大学物理系艰难地开展一些计算分子生物学的工作,像RNA二级结构预测、分子动力学、核酸序列的统计分析和蛋白质二级结构预测以及精神分裂症的脑复杂度分析等。至1986年,国家“863计划”支持几个单位用计算生物学实施蛋白质工程,如中国科学院的生物化学所、生物物理所和药物所,以及北京大学化学系和中国科大生物系。1990年这些单位率先开展生物信息学研究工作和实施相应的博士和博士后培养计划。1992年中国生物物理学会召开以“蛋白质工程、基因组分析与非线性生物学”为题的全国首届生物信息学会议,比首届国际生物信息学会议仅晚2年,但没有引起管理层和科技界注意。随后,北京大学化学系与生物系也分别开放蛋白质结构库(PDB)和欧洲生物信息学研究所(EBI)映象数据库服务。几年后,国际“基因组计划”变得十分火热。国内随即成立中国科学院国家基因研究中心和中国人类基因组南、北研究中心,分别负责“水稻基因组计划”和“人类基因组计划”。其中,中国科学院遗传所的人类基因组中心异军突起,克服重重困难于1999年9月代表中国承担国际人类基因组计划中1%的任务,即3号染色体短臂上的一个约30MB区域的测序。它成为中国各个基因组项目中最具影响和实际产出最明确的主要部分。由此,生物信息学顿时成为公众宠儿,科技界角逐的领域。除此之外,1993年美国国立健康研究院(NIH)宣布实施“人脑计划”。在头五年中主要发展神经信息学(Nuroinformatics),并于2000年6月在《自然》(Nature)杂志发文提议建立国际神经信息网络。国内与此差距甚大,但仍有积极响应。人类基因组计划的工作方式在生物领域中是前所未有的,采用了工业化模式的大科学工程。生物信息学解决了由此产生的海量信息的采集、存储、处理、共享、流通、服务和开发等挑战性问题。至今即将完成或已经完成测序的有人、褐鼠、黑腹果蝇、秀丽线虫、拟南芥菜、水稻、啤酒酵母等真核生物以及近百种微生物。其中重大的成就有:1.整基因组的测序原理和集装方案的提出和实行。从20世纪70年代简单病毒基因组测序开始到如今实施整基因组测序和集装,历经了整整20年的努力。2.从集装成的基因组序列预测基因,提示蛋白质功能,结构与功能分类,最后构成面向对象的数据库(ACEDB),无不依赖于生物信息学的支撑。3.后基因组的发展,如结构基因组学,功能基因组学,蛋白质组学、疾病基因组学,药物基因组学和环境基因组学等,更离不开高效、灵敏和准确的生物信息学。其中阵列信号检测(如DNA/Protein chip)的统计分析和众多基因组间的平行比较是典型的例子。与国际上生物信息学的重大成就相比,我国的研究呈现三种状况:一是序列基因组学(图谱与测序)中所用的生物信息科技(软硬件)多半从国外移植和拷贝;二是依靠国外生物信息中心(例如EBI和NCBI等)建立北京大学生物数据映象中心;三是中国生物信息学的本土基础力量较薄弱。尽管如此,仍取得了一些好的成果。这些成果包括:1.中国科技大学施蕴渝院士的研究组成功地发展了分子动力学,且用于蛋白质工程。尤其她将分子动力学和量子化学程序结合用来模拟酶促反应,是国际上少数成功事例之一。2.应用序列同源性搜索和基因电子克隆技术大大加快了新基因的发现。例如夏家辉院士的研究组发现了遗传性高频耳聋的疾病基因以及克隆了新的蛋白质激酶基因DyRk3和识别了人的auxilin基因。3.中国科学院生物化学研究所丁达夫研究组根据分子生物学的序列、结构和功能的基础关系在三个方面得到了好结果:① 从序列模建蛋白质三维结构。其中关键一步是序列—结构联配,在国际上是较早实行者之一。② 蛋白质分子设计。其中创新之处是氨基酸序列选择、侧链构象安装和主链骨架柔性的平行组合筛选,以及在小分子骨架上嫁接功能活性区。③ 基因组功能预测。其特点是发展了进化踪迹法,比通常的同源搜索方法有较高的正确率,且可延拓到细胞生化功能(代谢途径与调控网络)的预测。4.另外,中国科学院生物物理研究所陈润生研究组发现基因组的Junk DNA序列(即不编码基因的DNA序列)可能存在特异的编码方法,且与基因组调控网络关联。还有,中国科学院昆明动物所刘次全研究组,北京大学来鲁华研究组,以及内蒙古大学罗辽复研究组在结构生物信息学和基因组统计分析方面都有显著的成就。今年二月份《自然》和《科学》分别公布了国际人类基因组联合体和Celera基因组公司的人基因组测序结果。他们都认为这只是破解生命奥秘的良好开端,而不是完满的结束,基因组功能是永恒的主题。而且提出了一些实质性的问题,例如:1.基因组复杂性。虽然人和大猩猩的基因组仅差1%~2%,但是他们的基因组表达及其调控乃至整体行为却有很大差异。基因组复杂性同基因数、神经元数和细胞类型数没有直接关联。有人提出生化网络(代谢和调控)的复杂性才是基因组复杂性的表现。2.基因表达图谱(像DNA chip)可揭示整体细胞基因表达信息,是基因组功能分析方面的主要进展。然而细胞或组织中的mRNA丰度与蛋白质丰度的统计关联是不显著的(在人肝中0.48,在酶中小于0.4),因此基因组的后翻译修饰及其与环境的相互作用(epigenetics)对于理解生命的活动是不可缺少的,从而必须开展蛋白质组学和环境基因组学的研究计划,药物基因组学才能有较大的发展。毫无疑问,面对这些巨大系统工程,生物信息学看到的既有挑战又有机遇。  相似文献   

3.
基因组 genomeGenome这个名词于1922年第一次出现在遗传学文献中。中文译名为染色体组,后又译为基因组。随着遗传学研究的进展对基因组的涵义不断地赋以新的内容。一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。比如,人基因组中编码序列只占5%左右,换言之,人基因组中的非编码序列占95%以上。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说得更确切些,核基因组是单倍体细胞核内的全部DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。当然,也有人指出基因组应定义为一个细胞中所携带的全部遗传学指令。这是从基因组的功能着眼,因为基因组中的基因携带着编码产生蛋白质或RNA的遗传指令,同时基因组中的非编码序列携带着启动和调控基因活动的遗传指令。但是,基因组如果定义为全部遗传指令,那么,基因组的测序、作图和基因识别等就不易被人理解,遗传指令又怎么测序和作图呢?人类基因组计划 human genome project,HGP一般是指于1990年美国政府资助启动的研究人类基因组的计划。它被认为是生命科学研究领域中有史以来的第一个“大科学”项目,其意义和影响被誉为不亚于研究原子弹的“曼哈顿计划”和载人飞船登月的“阿波罗计划”。以后世界各国也都有各自的研究人类基因组的计划。HGP的主要内容是美国计划从1990至2005年间,历时15年,资助30亿美元,测定人类基因组的30亿对核苷酸的排列次序。由于实验操作上的考虑,必须把基因组DNA分子先打断成无数个小片段,然后测定每个小片段的核苷酸序列,最后把小片段连接回复到整个基因组。因此在测序前要先作图(mapping),即把每个小片段在整个基因组上的位置确定下来,以便今后可以有序地把小片段连接起来。HGP的工作内容除了作图和测序外,还有基因识别,模式生物(如大肠杆菌、酵母、果蝇、线虫和小鼠等)基因组的测序,发展生物信息学(bioinformatics)和研究HGP对伦理、法律和社会带来的冲击和影响等。在HGP实施过程中,特别是基因识别和基因克隆的成果,显现出巨大的商机。于是一些大跨国公司特别是医药行业的大财团纷纷斥巨资介入人类基因组研究领域。1998年5月美国的塞莱拉基因组学公司(Celera Genomics Inc.)宣布将于2001年完成人类基因组的工作草图(working draft),并于2003年最终完成人类基因组测序,在此态势下,美国政府也于1998年10月宣布调整HGP的工作进度,提前于2003年底前完成基因组测序。2000年6月26日,有美、英、德、日、法和中国参加的国际人类基因组测序联合体与美国塞莱拉公司联合宣布各自分别完成了人类基因组的“工作草图”。中国承担并完成了人类基因组1%的测序,即测定3000万对核苷酸序列。人类基因组工作草图 human genome “working draft”人类基因组的作图和测序是一个由粗到精的过程,是先把整个基因组打断成小片段,然后再把小片段连接复原。工作草图又称框架图,是一幅粗线条地绘制成的基因组图,它的特点有三:①应包含人体绝大多数基因的序列;②由于作图是由小片段连缀而成,所以会因丢失小片段而在图上留下空档(gap),工作草图可以留下空档,但对整个基因组的覆盖率应在90%以上;③草图中核苷酸序列的差错率可以高于最终所要求的万分之一,但不能超过百分之一。作图 mapping基因组研究中,确定遗传标记如基因、酶切位点、特定的DNA序列等在染色体上的位置,并计算它们之间的距离,称为作图。图可以分为遗传图(或遗传连锁图)、物理图两种。遗传图是根据两个遗传标记之间发生重组的频率来确定彼此在染色体上的位置和距离。两者相距远,发生重组的频率高;两者相距近,则连锁很紧密,不易发生重组。如果两个遗传标记分别位于两条染色体上也就不会发生重组。重组发生在细胞减数分裂期间,因此要分析上下代的染色体上的遗传标记出现的频率方能计算出两个标记在染色体上的相对距离。物理图则是把遗传标记直接定位在染色体DNA分子上,彼此间的距离也可用碱基对的多少来标定。基因组DNA测序后的全序列图是最精密的物理图,因为这幅图表明了几十亿个核苷酸的排列次序,标记物就是单个核苷酸。叠连群 contig一组克隆载体中插入的DNA片段,可通过末端的重叠序列相互连接成为一个连续的DNA长片段,这一组DNA片段即构成了一个叠连群。叠连群主要用于DNA测序和基因组作图。因为DNA的测序和作图时,一个很长的DNA分子在实验时是无法操作的,必须把它先切割成为小片段,然后把小片段连接起来,就是通过两个小片段末端共有的序列,相互叠加而连成长片段。因此,叠连群中小片段之间叠加的相同序列越短,研究工作效率则越高。表达序列标签 EST,expressed sequence tag在人类基因组研究中,有一个区别于“全基因组战略”的“cDNA战略”,即只测定转录的DNA序列,也就是测定基因转录产物mRNA反转录产生的互补DNA——cDNA。cDNA代表了基因中编码蛋白质的序列。EST则是cDNA的一个片段,一般长200~400个核苷酸对。一个全长的cDNA分子可以有许多个EST,但特定的EST有时可以代表某个特定的cDNA分子。两端有重叠的共有序列的EST可以组装成一个叠连群(contig),直到装配成全长的cDNA序列,这样就等于是克隆了一个基因的编码序列。将EST定位在基因组,也可作为基因组作图时的一种标记序列。互补DNA cDNA,complementary DNA信使RNA(mRNA)分子的双链DNA拷贝。构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列——内含子。克隆 clone用作名词时,克隆是指由遗传组成完全相同的分子、细胞或个体所组成的一个群体。例如,核苷酸序列完全相同的DNA片段或基因的众多份拷贝,就称为DNA分子克隆或基因克隆。来源同一个祖细胞的基因型完全相同的众多子细胞,就构成了一个细胞克隆。抗原分子刺激后会产生抗体分子,如果是一种抗原分子刺激后产生的是单克隆抗体;如果是多种抗原分子刺激后产生的则是多克隆抗体。通过无性繁殖获得相同基因型的生物体,这是个体克隆,也称为无性繁殖系。用作动词时,克隆是指运用DNA重组技术将某一特定基因或DNA序列,插入一个载体分子,然后将这个重组分子转入宿主细胞中复制增殖,使被插入的基因或DNA分子形成众多的拷贝。克隆也指分离出单个分子或单个细胞的操作过程。例如,克隆基因是指从基因组或DNA大片段中分离出某个基因或某种DNA序列;克隆细胞则是从许多类型的细胞群体中分离出某种特定类型的细胞。用作动名词(cloning)时,指分离出某一特定的基因、DNA分子或细胞后,用一些实验方法使在数量上增多以形成由许多份拷贝构成的一个群体,有时将这一过程称为克隆化。模式生物 model organism在人类基因组研究中十分注重模式生物的研究,这是由于要认识人体基因的功能,无法直接用人体作为实验对象。但是,生物是从共同祖先演化而来的,所以对生命活动有重要功能的基因在进化上是保守的,也就是说,这些基因的结构和功能,在低等生物和高等生物中是相似的。因此,可以用比较容易研究的生物作为模型来研究其基因的结构和生物学功能,由此获得的信息可以使用于其他比较难以研究的生物,特别是推测相似的人体基因的功能。例如,果蝇、小鼠甚至酵母等基因组都有与癌症发生相关的癌基因和抗癌基因,与细胞死亡、衰老有关的基因,以及与引起人类某些遗传病的相关基因。染色体 chromosome指经染料染色后用显微镜可以观察到的一种细胞器。在细菌中,染色体是一个裸露的环状双链DNA分子。在真核生物中,当细胞进行分裂期间染色体呈棒状结构。染色体的数目是随物种而异,但对每一物种而言,染色体的数目是固定的。比如人的染色体在二倍体细胞里是46条,在生殖细胞里则是23条。染色体是由线性双链DNA分子同蛋白质形成的复合物,真核生物的核基因就分藏在每条染色体中,所以,染色体是基因的载体,也就是遗传信息的载体。一个细胞里的全部染色体也就包含了这个生物体的全部遗传信息。序列 sequenceDNA分子是由4种核苷酸(A,T,G,C)排列组成,DNA序列就是组成某一DNA分子的核苷酸的排列次序。蛋白质的一级结构是由20种氨基酸线性排列构成。蛋白质序列就是构成某种蛋白质如氨基酸线性排列次序。因此,测序(sequencing)就是用实验方法,测定DNA分子中核苷酸的种类及其排列次序,或者测定蛋白质分子中氨基酸的种类及其排列次序。人基因组测序是指测定构成人基因组的约30亿个核苷酸的种类及其排列次序。基因组中的DNA序列可以分为两大类:一类是单一序列,即在基因组中这种核苷酸的排列次序只出现一次或只有一份拷贝;另一类是重复序列。指某种核苷酸排列次序在基因组出现的次数或其拷贝数少则几份,十几份,多的可达几万份甚至几十万份。构成基因的极大多数是单一序列。重复序列则基本上全是非编码序列,它们的生物学功能是一个尚未解开的谜团。遗传密码 genetic code这是支配信使RNA(mRNA)分子中4种核苷酸的线性序列,同由它编码的蛋白质中20种氨基酸的线性序列之间关系的法则。基因是DNA分子。DNA分子由4种核苷酸(A,T,G,C)排列组成。不同的基因所携带的不同的遗传信息,编码在不同的核苷酸序列中。遗传信息要翻译成另一种语言即蛋白质的氨基酸序列,才能实现其生物学功能。可是,DNA并不是直接把遗传信息传递给蛋白质,而是先转录成mRNA,然后以mRNA为中介来决定蛋白质中的氨基酸序列。一个线性mRNA分子的核苷酸序列,决定一个线性的蛋白质分子的氨基酸序列。mRNA同DNA一样,也是由4种核苷酸组成,所不同的只是mRNA用U代替了T,即A,U,G,C4种核苷酸。蛋白质由20种氨基酸组成。mRNA分子中的核苷酸以三个为一组,如AAA,AUA,AUG……构成了一个密码子;一个密码子决定一种氨基酸。mRNA的4种核苷酸组成的密码子可以有43=64种。64种密码子决定20种氨基酸。因此密码子是冗余的或简并的,即一种氨基酸可以有不止一个密码子。比如编码甘氨酸的密码子就有4个:GGU,GGC,GGA和GGG,编码精氨基酸的密码子则有6个:CGU,CGC,CGA,CGG,AGA和AGG。不同的基因有不同的核苷酸序列,决定不同的氨基酸序列,产生不同的蛋白质,行使不同的生物学功能,最后使生物体出现不同的性状。这种遗传密码是在20世纪60年代早期破译的。基因库 gene pool有性生殖生物的一个群体中,能进行生殖的个体所携带的全部基因,或全部遗传信息,或者是一个群体中所有个体的基因型的汇总。对二倍体生物而言,有N个个体的一个群体的基因库,由2N个单倍体基因组所组成。基因文库 gene library一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段克隆在载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含了这个生物体的整个基因组,也就是构成了这个生物体的基因文库。基因型分型 genotyping这是确定一条染色体上一些基因,DNA序列或遗传标记的连锁组合,实际上就是确定一条染色体上某个区段的单体型(haplotype)。现在有的译为基因分型是不够确切的,因为分型的不止有基因,而主要是遗传标记。共线性 synteny一个物种的基因组中相互连锁的基因,在另一物种的基因组中也是连锁关系,而且在两个物种的遗传图上的位置也是相似的。例如,人和小鼠之间就有一百多个共线区。在进化过程中一些基因始终保持着连锁关系,这意味着这种连锁可能在一定条件下具有选择上的某种优势。这对研究基因功能之间的相互关系提供了有用的线索。种间同源基因 ortholog不同物种中起源于一个共同的祖先基因的一些同源基因。这些基因通常保持着相同的或相似的功能。种内同源基因 paralog在进化过程中的一个基因通过重复而生成许多个基因,这些基因逐步分化成为不同的基因,这些不同的基因称为种内同源基因。例如,在脊椎动物进化过程中,祖先珠蛋白基因位置重复而后逐步分化成α珠蛋白基因、β珠蛋白基因和肌球蛋白基因等。混编 shufflingShuffling的原意是扑克牌的洗牌,54张牌在洗牌后可以有无数种的排列组合。在新基因的生成和基因进化研究中,借用shuffling这个词,提出了“外显子混编(exon shuffling)”和“结构域混编(domain shuffling)”等假说。即新的基因是由原来的基因打断后的断片混编而成的,或者是由编码蛋白质结构域的基因片段混编而成。这种基因片段可能就是外显子,因此称为外显子混编。表观遗传学 epigenetics研究基因的核苷酸序列不发生改变的情况下,基因表达出现了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记(genomic imprinting)和RNA编辑(RNA editing)等。朊粒 prion蛋白质性质的感染颗粒的简称。(我注意到对这个译名有不同的意见,已提出的有“朊病毒”,“感染朊”或干脆音译为“普立昂”。朊病毒有点牵强附会,prion并不具有病毒的特征。感染朊是可以考虑的,但不如朊粒简明。)酶性核酸 ribozyme具有酶一样催化活性的核酸分子,有的译为“核酶”似不大贴切。* 赵寿元教授是全国科学技术名词审定委员会第四届委员会委员;遗传学名词审定委员会主任(第二届)。(注:“小词典”栏中的词目并不都是经审定过的规范词。)  相似文献   

4.
在1980年代提出1990年正式启动的人类基因组研究计划(HGP),其具体目的是鉴定所有人类基因和将整个基因组排序。在未来15年完成HGP,将为生物学和医学提供一本原始资料。然而,在这个时间框架内,所有基因的功能,单个基因或基因协调一致的功能,还不会知道,基因在世界范围内的变异也不能确定。人类基因多样性研究计划(HGDP)是一项国际性科学工作,它是HGP的补充,通过分析全世界人群。家庭和个人的DNA来考查人类基因组的变异。HGDP有可能帮助我们人类的基本单位,人类的生物史,人群运动,以及对种种人类疾病的易感性或抵抗性…  相似文献   

5.
DNA序列中蕴含了控制人类生命活动的种种信息,决定了肤色、身高、体重等生物学性状,也对人类疾病与健康有着至关重要的影响。目前广泛威胁我国人民生命健康的常见重大疾病,如癌症、糖尿病、心脑血管疾病等都具有特定的遗传基础。由于进化历史、生活习俗等种种原因,中国人具有自己独特的遗传背景,在疾病易感性和药物反应方面与其他族群存在显著差异,导致许多对白种人群有效的基因诊断、药物等医学研究成果不能够应用于中国乃至亚洲人群。“炎黄1号”作为中国人参照基因组序列,从基因组学上对这些差异做出了解释,揭示了中国人自主的基因组研究与中国人的医学健康事业发展的重要关联性和必要性,对中国的基因科学研究和产业发展具有重要的指导意义。  相似文献   

6.
现代性的价值指向、人性的基因决定论、人类天性与价值之间直接的因果决定论以及人类自由对基因获得方式的依赖性共同构成了哈贝马斯人性论的理论困境,使人性论在人类基因增强伦理批判中日现困境。发展伦理学的发展有限性原则提供了整体主义的视角,使我们能够从人类基因组、自然和社会三个系统对人类角色的限制来考察人类的角色,从而使基因增强对人类的生存可能具有的负面价值清晰地呈现出来。  相似文献   

7.
摘要 本文从人类基因组多样性研究成果证实人类种族之间存在基因差异的事实出发,概述了基因武器的产生背景,提出了基因武器的概念。对基因武器的原理、性能和特点进行了分析,对基因武器在全球范围内的研制状况进行了介绍,对基因武器的发展态势及其潜在威胁进行了预测。提出了我国应当呼吁国际社会全面禁止基因武器的研制和使用,寻求对中华民族有效的生物药剂和疫苗,研制对抗基因武器的新型探测和防护器材,以及探索未来反基因战的战法、途径和手段等四项基本对策。
在人类基因组多样性的研究中,已经发现人种之间确实存在基因的差异。这种差异,很可能被种族主义者和恐怖主义分子所利用。他们可以根据不同种族基因组多样性特点,采用基因工程技术手段,设计、研制出针对某一种族的基因武器,从而对某一种族或国家的安全造成潜在的和巨大的威胁。基因武器就是在生物遗传工程技术的基础上,用人为的方法,按照军事上的需要,利用基因重组技术,复制大量致病微生物的遗传基因,并制成生物战剂放入施放装置内所构成的武器。它能改变非致病微生物的遗传物质,使其产生具有显著抗药性的致病菌,利用人种生化特征上的差异,使这种致病菌只对特定遗传特征的人们产生致病作用,从而有选择地消灭敌方有生力量。基因武器杀伤力极其强大,远非普通的生物战剂所能比拟。据估算,用5000万美元建造一个基因武器库,其杀伤效能远远超过50亿美元建造的核武器库。某国曾利用细胞中的脱氧核糖核酸的生物催化作用,把一种病毒的DNA分离出来,再与另一种病毒的DNA相结合,拼接成一种具有剧毒的“热毒素”基因毒剂,用其万分之一毫克就能毒死100只猫;倘用其20克,就足以使全球55亿人死于一旦。正因为如此,国外有人将“基因武器”称为“世界末日武器”。科学家认为,不能排除随着基因操作等知识的日益普及,基因技术被用于制造基因武器的可能。有人甚至预测,基因武器将在5至10年内出现。在战略上,基因武器将使作战方式发生明显变化。使用者只需要在临战前将经过基因工程培养的病菌投入他国,或利用飞机、导弹等将带有致病基因的微生物投入他国交通要道或城市,让病毒自然扩散、繁殖,使敌方人、畜在短时间患一种无法治疗的疾病,从而丧失战斗能力。此外,基因武器可根据需要任意重组基因,可在一些生物中移入损伤人类智力的基因。当某一特定族群的人们沾染上这种带有损伤智力基因的病菌时,就会丧失正常智力。在战术上,基因武器不易被发现,将使对方防不胜防。因为经过改造的病毒和病菌基因,只有制造者才知道它的遗传“密码”,其他人很难破译和控制。同时,基因武器的杀伤作用过程是在秘密之中进行的,人们一般不能提前发现和采取有效的防护措施。一旦感受到伤害,为时已晚,在此之前早已遭到基因病毒的侵袭,很难治疗。此外,基因武器还有成本低、持续时间长、使用方法简单、施放手段多样、不破坏敌方基础设施和武器装备等特点,具有较强的心理威慑作用。目前,至少美国、俄罗斯和以色列都有研制基因武器的计划。美国已经研制出一些具有实战价值的基因武器。他们在普通酿酒菌中接入一种在非洲和中东引起可怕的裂各热细菌的基因,从而使酿酒菌可以传播裂各热病。另外,美国已完成了把具有抗四环素作用的大肠肝菌遗传基因与具有抗青霉素作用的金色葡萄球菌的基因拼接,再把拼接的分子引入大肠肝菌中,培养出具有抗上述两种杀菌素的新大肠肝菌。俄罗斯已利用遗传工程学方法,研究了一种属于炭疽变素的新型毒素,可以对任何抗生素产生抗药性,目前找不到任何解毒剂。以色列正在研制一种仅能杀伤阿拉伯人而对犹太人没有危害的基因武器。为了保护全人类的最大利益,维护和促进世界和平与发展,有效防范基因武器的潜在威胁,我们应采取以下对策:第一,积极敦促国际社会按照1998年联合国大会批准的“关于人类基因组与人类权利的国际宣言”的精神,在全球范围内达成有关限制基因技术的使用,全面禁止基因武器研制的伦理公约和协议;第二,尽快采取行动,认真研究本民族的基因密码,及早察明其中的特异性和易感性基因,有针对性地采用生物工程技术研制有效的生物药剂和疫苗,提高和增强民族的基因抵抗力;第三,积极应用高新技术,针锋相对地研制反基因武器,研制新型探测和防护器材,做到有效识别和防护;第四,针对敌军可能实施基因战的战法、途径和手段进行专门研究,及早制定行动预案。只有这样,在未来可能面临的基因威慑与反威慑的斗争中,中华民族才不致于受制于人。  相似文献   

8.
成立于2007年的深圳华大基因研究院,在全球各基因组中心中位居第三。自承担人类基因组计划1%的工作开始,华大基因先后完成了中国水稻基因组计划、SARA基因组研究、家蚕、家鸡、大熊猫基因组计划等多个项目,为中国和世界基因组科学的发展做出了突出贡献,被业界形象地喻为“基因测序世界工厂”。  相似文献   

9.
《中国基础科学》2006,8(2):63-63
在国家863计划、973计划和上海市科委等的支持下,国家人类基因组南方研究中心黄薇课题组联合复旦大学遗传工程国家重点实验室、上海南方基因科技有限公司、上海交通大学医学院附属瑞金医院上海血液学研究所及医学基因组学国家重点实验室、中科院-马普学会计算生物学伙伴研究所和上海生物芯片有限公司等单位,利用人类21号染色体上约2万多个单核苷酸多态性(SNPs)位点,将300多个有代表性的中国人群和世界其他人群进行了对照,通过约2000多万个基因分型分析,成功绘制出了中国人21号染色体遗传变异图谱。  相似文献   

10.
本文从人类基因组多样性研究成果证实人类种族之间存在基因差异的事实出发 ,概述了基因武器的产生背景 ,提出了基因武器的概念。对基因武器的原理、性能和特点进行了分析 ,对基因武器在全球范围内的研制状况进行了介绍 ,对基因武器的发展态势及其潜在威胁进行了预测。提出了我国应当呼吁国际社会全面禁止基因武器的研制和使用 ,寻求对中华民族有效的生物药剂和疫苗 ,研制对抗基因武器的新型探测和防护器材 ,以及探索未来反基因战的战法、途径和手段等四项基本对策。  相似文献   

11.
詹妮·格雷夫斯是澳大利亚最有影响力的科学家之一。近日,她在澳大利亚科学院的一次公开演讲中说,男性独有的Y染色体十分脆弱,无法自行修复基因变异造成的损伤,这意味着男性正在走向灭绝,女性将在性别之战中赢得胜利,并且灭绝的过程已经开始了。格拉夫斯表示,X染色体包含有大约1000个健康的基因,Y染色体最初拥有和X染色体同样多的基因。但是经过数亿年的长期进化过程后,现代男性所拥有的Y染色体里只剩下不  相似文献   

12.
张章 《科学大观园》2013,(22):40-41
通过一项耗资2500万美元的项目,数百个美国婴儿将成为基因组医学领域的“先锋者”。科学家们会在这些婴儿出生后不久立刻为他们测序基因。基因组测序和新生儿疾病筛查研究项目的支持者公开表示,对于那些在孩子一出生便想了解其全面基因构成以及整个童年时期情况的父母而言,相关项目将测试它到底多有用以及是否合乎伦殚。  相似文献   

13.
人类基因组中有多少个衰老调控基因?这些基因参与衰老调控的分子机制是什么?能否在分子层面"操控"这些基因以延缓机体的衰老?对于这些衰老领域亟待解决的重要科学问题,我国科研人员有了新的见解. 1月7日,中国科学家在Science Translational Medicine上最新发表了一项研究论文.该研究首次利用全基因组CRISPR/Cas9筛选体系,在人间充质干细胞中鉴定出新的衰老调控基因,并在此基础上开发出可延缓机体衰老的新型"基因疗法",扩展了学界对于衰老基因的认识,为延缓衰老、防治衰老相关疾病提供了重要的干预靶标与新型策略.  相似文献   

14.
时光荏苒,我们再一次聆听了21世纪里的新年钟声。回首逝去的2003,科学的福祉赐给了人类的每一个成员。继人类基因组“工作框架图”问世之后,美、日、德、法、英、中等6国科学家和美国塞莱拉公司2月12日联合公布了人类基因组图谱及初步分析结果。这标志着人类在探索自身奥秘过程中又向纵深迈进了一大步。人类基因组蕴涵着人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命;将对生命科学和生物技术的发展起到重要的推动作用。科学家发现全球变暖的地球及其生物的新证据。多项研究报告找到…  相似文献   

15.
《中国基础科学》2012,(4):44-44
中国农业科学院棉花研究所棉花生物学国家重点实验室喻树迅研究组、华大基因研究院王俊研究组和北京大学蛋白质工程与植物基因工程国家重点实验室朱玉贤研究组等合作,完成对二倍体棉花雷蒙德氏棉基因组测序,并组装出其基因组草图。超过73%的组装序列被锚定在雷蒙德氏棉的13条染色体上。基因组包括了40976个蛋白质编码基因,其中92.2%得到了转录组学数据的证实。  相似文献   

16.
张季 《科学大观园》2005,(14):43-44
日前,科学家们成功地完成了人类基因组的测序工作。那么,未来探索生命奥秘的前景如何呢?美国国立卫生研究院国家人类基因组研究所所长何林斯博士,作为国际人类基因组计划的领军人物,近日对有关生命奥秘的八个问题进行了科学预测。  相似文献   

17.
尽管在过去200年时间里,全球男性平均身高增长了15厘米左右,然而决定男性性别的Y染色体长度着实在不断缩短。早在1600多万年前,X和Y染色体拥有共同的来源,各自拥有1669个基因,而现在的Y染色体长度仅为X染色体的1/3。未来Y染色体是否会消失?这是否会意味着男性将从这个星球上灭绝?越来越短的Y染色体拥有特殊基因的X、Y染色体有高度的特异性。美国遗传学  相似文献   

18.
基因组 genomeGenome这个名词于 1 92 2年第一次出现在遗传学文献中。中文译名为染色体组 ,后又译为基因组。随着遗传学研究的进展对基因组的涵义不断地赋以新的内容。一般的定义是单倍体细胞中的全套染色体为一个基因组 ,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。比如 ,人基因组中编码序列只占 5 %左右 ,换言之 ,人基因组中的非编码序列占 95 %以上。因此 ,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说得更确切些 ,核基…  相似文献   

19.
诱导多能干细胞(iPS细胞)在再生医学与个体化治疗中有着巨大的优势和潜力,但iPS细胞的基因组稳定性较低带来的致瘤性等潜在风险阻碍了其临床应用。在2012年国家重大科学研究计划"iPS细胞重编程过程中染色体稳定性调控的机制研究"项目资助下,我们围绕"iPS重编程中染色体稳定性的分子调控机制是什么?"这一科学问题,取得了一系列原创性的研究成果,为发展提高iPS细胞基因组稳定性以及其质量的方法奠定了理论基础。本文总结了项目的研究背景,取得的研究进展和今后的发展方向。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号