首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Nanoscale architecture of integrin-based cell adhesions   总被引:3,自引:0,他引:3  
Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing. Focal adhesions are multifunctional organelles that mediate cell-ECM adhesion, force transmission, cytoskeletal regulation and signalling. Focal adhesions consist of a complex network of trans-plasma-membrane integrins and cytoplasmic proteins that form a?<200-nm plaque linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy) to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a ~40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin's polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.  相似文献   

2.
Membrane phosphoinositides control a variety of cellular processes through the recruitment and/or regulation of cytosolic proteins. One mechanism ensuring spatial specificity in phosphoinositide signalling is the targeting of enzymes that mediate their metabolism to specific subcellular sites. Phosphatidylinositol phosphate kinase type 1 gamma (PtdInsPKI gamma) is a phosphatidylinositol-4-phosphate 5-kinase that is expressed at high levels in brain, and is concentrated at synapses. Here we show that the predominant brain splice variant of PtdInsPKI gamma (PtdInsPKI gamma-90) binds, by means of a short carboxy-terminal peptide, to the FERM domain of talin, and is strongly activated by this interaction. Talin, a principal component of focal adhesion plaques, is also present at synapses. PtdInsPKI gamma-90 is expressed in non-neuronal cells, albeit at much lower levels than in neurons, and is concentrated at focal adhesion plaques, where phosphatidylinositol-4,5-bisphosphate has an important regulatory role. Overexpression of PtdInsPKI gamma-90, or expression of its C-terminal domain, disrupts focal adhesion plaques, probably by local disruption of normal phosphoinositide balance. These findings define an interaction that has a regulatory role in cell adhesion and suggest new similarities between molecular interactions underlying synaptic junctions and general mechanisms of cell adhesion.  相似文献   

3.
P T Hawkins  T R Jackson  L R Stephens 《Nature》1992,358(6382):157-159
Although the hormone-stimulated synthesis of 3-phosphorylated inositol lipids is known to form an intracellular signalling system, there is no consensus on the crucial receptor-regulated event in this pathway and it is still not clear which of the intermediates represent potential output signals. We show here that the key step in the synthesis of 3-phosphorylated inositol lipids in 3T3 cells stimulated by platelet-derived growth factor is the activation of a phosphatidylinositol(4,5)-bisphosphate (3)-hydroxy (PtdIns(4,5)P2 3-OH) kinase. A similar conclusion has been applied to explain the actions of formyl-Met-Leu-Phe on neutrophils, and it may be that receptors that couple through intrinsic tyrosine kinases or through G proteins stimulate the same step in 3-phosphorylated inositol lipid metabolism. The close parallel between these two mechanisms for the activation of PtdIns(4,5)P2 3-OH kinase and those described for the activation of another key signalling enzyme, phospholipase C (ref. 7), focuses attention on the product of the PtdIns(4,5)P2 3-OH kinase, PtdIns(3,4,5)P3, as a possible new second messenger.  相似文献   

4.
A H Drummond 《Nature》1985,315(6022):752-755
It is now established that a key step in the action of calcium-mobilizing agonists is stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to 1,2-diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). The latter substance acts as a second messenger, controlling the release of calcium from intracellular stores (see ref. 3 for review). The bifurcating nature of the signalling system is exemplified by the fact that the other product of PtdIns(4,5)P2 hydrolysis, 1,2-diacylglycerol, can alter cellular function by activating protein kinase C, the cellular target for several tumour-promoting agents such as the phorbol esters. In various tissues, including GH3 pituitary tumour cells, a synergistic interaction between calcium ions and protein kinase C underlies agonist-induced changes in cell activity. The data presented here suggest that when GH3 cells are stimulated by thyrotropin-releasing hormone (TRH), an agonist inducing PtdIns(4,5)P2 hydrolysis, the two limbs of the inositol lipid signalling system interact to control free cytosolic calcium levels [( Ca2+]i). At low levels of TRH receptor occupancy, [Ca2+]i increases rapidly, then declines relatively slowly. As receptor occupancy increases, the calcium signal becomes more short-lived due to the appearance of a second, inhibitory, component. This latter component, which is enhanced when [Ca2+]i is elevated by high potassium depolarization, is mimicked by active phorbol esters and by bacterial phospholipase C. It seems likely that protein kinase C subserves a negative feedback role in agonist-induced calcium mobilization.  相似文献   

5.
Izard T  Evans G  Borgon RA  Rush CL  Bricogne G  Bois PR 《Nature》2004,427(6970):171-175
Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.  相似文献   

6.
7.
Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2   总被引:15,自引:0,他引:15  
Wu L  Bauer CS  Zhen XG  Xie C  Yang J 《Nature》2002,419(6910):947-952
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects persistent intrinsic modulation of VGCCs in intact cells. Although several mechanisms have been reported to contribute to rundown of L-type channels, the mechanism of rundown of other types of VGCC is poorly understood. Here we show that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), an essential regulator of ion channels and transporters, is crucial for maintaining the activity of P/Q- and N-type channels. Activation of membrane receptors that stimulate hydrolysis of PtdIns(4,5)P2 causes channel inhibition in oocytes and neurons. PtdIns(4,5)P2 also inhibits P/Q-type channels by altering the voltage dependence of channel activation and making the channels more difficult to open. This inhibition is alleviated by phosphorylation by protein kinase A. The dual actions of PtdIns(4,5)P2 and the crosstalk between PtdIns(4,5)P2 and protein kinase A set up a dynamic mechanism through which the activity of VGCCs can be finely tuned by various neurotransmitters, hormones and trophic factors.  相似文献   

8.
M Whitman  C P Downes  M Keeler  T Keller  L Cantley 《Nature》1988,332(6165):644-646
The generation of second messengers from the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2) by phosphoinositidase C has been implicated in the mediation of cellular responses to a variety of growth factors and oncogene products. The first step in the production of PtdInsP2 from phosphatidylinositol (PtdIns) is catalysed by PtdIns kinase. A PtdIns kinase activity has been found to associate specifically with several oncogene products, as well as with the platelet-derived growth factor (PDGF) receptor. We have previously identified two biochemically distinct PtdIns kinases in fibroblasts, and have found that only one of these, designated type I, specifically associates with activated tyrosine kinases. We have now characterized the site on the inositol ring phosphorylated by type I PtdIns kinase, and find that this kinase specifically phosphorylates the D-3 ring position to generate a novel phospholipid, phosphatidylinositol-3-phosphate (PtdIns(3)P). In contrast, the main PtdIns kinase in fibroblasts, designated type II, specifically phosphorylates the D-4 position to produce phosphatidylinositol-4-phosphate (PtdIns(4)P), previously considered to be the only form of PtdInsP. We have also tentatively identified PtdIns(3)P as a minor component of total PtdInsP in intact fibroblasts. We propose that type I PtdIns kinase is responsible for the generation of PtdIns(3)P in intact cells, and that this novel phosphoinositide could be important in the transduction of mitogenic and oncogenic signals.  相似文献   

9.
Stimulation of certain receptor tyrosine kinases results in the tyrosine phosphorylation and activation of phospholipase C gamma (PLC gamma), an enzyme that catalyses the hydrolysis of phosphatidylinositol (PtdIns). This hydrolysis generates diacylglycerol and free inositol phosphate, which in turn activate protein kinase C and increase intracellular Ca2+, respectively. PLC gamma physically associates with activated receptor tyrosine kinases, suggesting that it is a substrate for direct phosphorylation by these kinases. Here we report that a fibroblast growth factor (FGF) receptor with a single point mutation at residue 766 replacing tyrosine with phenylalanine fails to associate with PLC gamma in response to FGF. This mutant receptor also failed to mediate PtdIns hydrolysis and Ca2+ mobilization after FGF stimulation. However, the mutant receptor phosphorylated itself and several other cellular proteins, and it mediated mitogenesis in response to FGF. These findings show that a point mutation in the FGF receptor selectively eliminates activation of PLC gamma and that neither Ca2+ mobilization nor PtdIns hydrolysis are required for FGF-induced mitogenesis.  相似文献   

10.
The primary action of a family of mitogens including bombesin, bradykinin, vasopressin and alpha-thrombin is to activate the hydrolysis of polyphosphoinositides. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) by phospholipase C is mediated through coupling of surface receptors to a GTP-binding protein (Gp protein) which, in some cells, is inactivated by the toxin of Bordetella pertussis. It is not known whether this signalling pathway is involved in initiating DNA replication, whereas it has been firmly established that reinitiation of DNA synthesis can be triggered without activation of PtdIns(4,5)P2 hydrolysis by, for example, EGF (epidermal growth factor), FGF (fibroblast growth factor) and insulin/IGF-I (insulin-like growth factor-I), members of a class of mitogens known to activate receptor tyrosine kinases. Taking advantage of the fact that Chinese hamster lung fibroblasts respond to either class of mitogens and that their Gp protein appears to be sensitive to pertussis toxin, we have now analysed the toxin's effect on reinitiation of DNA synthesis and find that it inhibits up to 95% of thrombin-induced mitogenicity without affecting EGF- or FGF-induced DNA synthesis and proliferation. These findings strongly suggest that activation of PtdIns(4,5)P2-phospholipase C has a determinant function in growth control, and confirm the existence of alternative growth factor-signalling pathways independent of polyphosphoinositide breakdown.  相似文献   

11.
R F Irvine  A J Letcher  J P Heslop  M J Berridge 《Nature》1986,320(6063):631-634
Recent advances in our understanding of the role of inositides in cell signalling have led to the central hypothesis that a receptor-stimulated phosphodiesteratic hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) results in the formation of two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). The existence of another pathway of inositide metabolism was first suggested by the discovery that a novel inositol trisphosphate, Ins(1,3,4)P3, is formed in stimulated tissues; the metabolic kinetics of Ins(1,3,4)P3 are entirely different from those of Ins(1,4,5)P3 (refs 6, 7). The probable route of formation of Ins(1,3,4)P3 was recently shown to be via a 5-dephosphorylation of inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), a compound which is rapidly formed on muscarinic stimulation of brain slices, and which can be readily converted to Ins(1,3,4)P3 by a 5-phosphatase in red blood cell membranes. However, the source of Ins(1,3,4,5)P4 is unclear, and an attempt to detect a possible parent lipid, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), was unsuccessful. The recent discovery that the higher phosphorylated forms of inositol (InsP5 and InsP6) also exist in animal cells suggested that inositol phosphate kinases might not be confined to plant and avian tissues, and here we show that a variety of animal tissues contain an active and specific Ins(1,4,5)P3 3-kinase. We therefore suggest that an inositol tris/tetrakisphosphate pathway exists as an alternative route to the dephosphorylation of Ins(1,4,5)P3. The function of this novel pathway is unknown.  相似文献   

12.
An inositol tetrakisphosphate-containing phospholipid in activated neutrophils   总被引:15,自引:0,他引:15  
Inositol (1,4,5)triphosphate (InsP3) and tetrakisphosphate (InsP4) have been observed in a variety of cell types and have been proposed to play roles in the receptor-mediated rise in intracellular Ca2+ (refs 2, 3). Recently, they have been shown to act synergistically in the activation of a Ca2+-dependent K+ channel in lacrimal acinar cells. InsP3 is the product of phospholipase C (PLC) action on phosphatidylinositol 4,5-bisphosphate (PtdInsP2) whereas InsP4 is believed to arise from phosphorylation of InsP3 by a cytosolic kinase. Although sought as a source for InsP4, PtdInsP3 has not been identified in any specific cell type. There were early reports of InsP4-containing phospholipids in crude extract from bovine brain, but this finding was later withdrawn. Recently, however, a membrane-bound enzyme (Type 1 PI kinase) which adds phosphate onto the 3 position of inositol phospholipids has been identified and the phosphatidylinositol-3-phosphate (PtdIns(3)P) product characterized. This suggests that several forms of phosphoinositides may exist and could be precursors for some of the variety of soluble inositol phosphate products which have been reported in recent years. Here we report the appearance of another novel phosphoinositide containing four phosphates, phosphatidylinositol trisphosphate (PtdInsP3) which we find only in activated but not in unstimulated neutrophils from human donors.  相似文献   

13.
Structural insights into phosphoinositide 3-kinase catalysis and signalling   总被引:12,自引:0,他引:12  
Walker EH  Perisic O  Ried C  Stephens L  Williams RL 《Nature》1999,402(6759):313-320
Phosphoinositide 3-kinases (PI3Ks) are ubiquitous lipid kinases that function both as signal transducers downstream of cell-surface receptors and in constitutive intracellular membrane and protein trafficking pathways. All PI3Ks are dual-specificity enzymes with a lipid kinase activity which phosphorylates phosphoinositides at the 3-hydroxyl, and a protein kinase activity. The products of PI3K-catalysed reactions, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), PtdIns(3,4)P2 and PtdIns(3)P, are second messengers in a variety of signal transduction pathways, including those essential to cell proliferation, adhesion, survival, cytoskeletal rearrangement and vesicle trafficking. Here we report the 2.2 A X-ray crystallographic structure of the catalytic subunit of PI3Kgamma, the class I enzyme that is activated by heterotrimeric G-protein betagamma subunits and Ras. PI3Kgamma has a modular organization centred around a helical-domain spine, with C2 and catalytic domains positioned to interact with phospholipid membranes, and a Ras-binding domain placed against the catalytic domain where it could drive allosteric activation of the enzyme.  相似文献   

14.
H Higashida  D A Brown 《Nature》1986,323(6086):333-335
Hydrolysis of the membrane phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) produces two prospective intracellular messengers: inositol 1,4,5-trisphosphate (InsP3), which releases Ca2+ from intracellular stores; and diacylglycerol (DG), which activates protein kinase C. Here we show how the formation of these two substances triggered by one external messenger, bradykinin, leads to the appearance of two different sequential membrane conductance changes in the neurone-like NG108-15 neuroblastoma-glioma hybrid cell line. In these cells bradykinin rapidly hydrolyses PtdIns(4,5)P2 to InsP3 and DG, raises intracellular Ca2+ and hyperpolarizes then depolarizes the cell membrane. By voltage-clamp recording we show that the hyperpolarization results from the activation pharmacologically-identifiable species of Ca2+-dependent K+ current. This is also activated by intracellular injections of Ca2+ or InsP3 so may be attributed to the formation and action of InsP3. The subsequent depolarization results primarily from the inhibition of a different, voltage-dependent K+ current, the M-current that is also inhibited by DG activators. Hence we describe for the first time a dual, time-dependent role for these two intracellular messengers in the control of neuronal signalling by a peptide.  相似文献   

15.
D J Storey  S B Shears  C J Kirk  R H Michell 《Nature》1984,312(5992):374-376
Many receptors for hormones, neurotransmitters and other signals cause hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and effect a rise in cytosolic Ca2+ concentration. The inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) liberated during PtdIns(4,5)P2 breakdown seems to serve as a second messenger that activates the release of Ca2+ from a nonmitochondrial intracellular compartment. As expected if it is an important intracellular messenger, Ins(1,4,5)P3 is relatively rapidly degraded, both within stimulated cells and when added to homogenates of blowfly salivary gland or to permeabilized, but not intact, hepatocytes. Here we report that the dephosphorylation reactions responsible for the conversion of Ins(1,4,5)P3 to free inositol in rat liver are catalysed by two or more enzymes, and that these reactions are distributed between the plasma membrane and cytosol. The Ins(1,4,5)P3 5-phosphatase and inositol 1-phosphate (Ins(1)P) phosphatase of liver appear similar to enzymes described previously in erythrocytes and brain.  相似文献   

16.
Sequence and domain structure of talin   总被引:45,自引:0,他引:45  
D J Rees  S E Ades  S J Singer  R O Hynes 《Nature》1990,347(6294):685-689
Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell-substratum contact and, in lymphocytes, at cell-cell contacts. Integrin receptors are involved in the attachment of adherent cells to extracellular matrices and of lymphocytes to other cells. In these situations, talin codistributes with concentrations of integrins in the cell surface membrane. Furthermore, in vitro binding studies suggest that integrins bind to talin, although with low affinity. Talin also binds with high affinity to vinculin, another cytoskeletal protein concentrated at points of cell adhesion. Finally, talin is a substrate for the Ca2(+)-activated protease, calpain II, which is also concentrated at points of cell-substratum contact. To learn more about the structure of talin and its involvement in transmembrane connections between extracellular adhesions and the cytoskeleton, we have cloned and sequenced murine talin. We describe a model for the structure of talin based on this sequence and other data. Homologies between talin and other proteins define a novel family of submembranous cytoskeleton-associated proteins all apparently involved in connections to the plasma membrane.  相似文献   

17.
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes   总被引:3,自引:0,他引:3  
Y Oron  N Dascal  E Nadler  M Lupu 《Nature》1985,313(5998):141-143
The enhanced metabolism of phosphoinositides, which is associated with a wide variety of stimuli and physiological responses, has been studied intensively. Berridge and his collaborators demonstrated that the first measurable reaction following cell membrane receptor activation is a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), and that the product of this reaction, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), could cause a release of non-mitochondrial calcium. These findings have been verified in other systems. Although the relationship between the hydrolysis of PtdIns(4,5)P2 and the mobilization of intracellular calcium was clearly demonstrated, the direct link between Ins(1,4,5)P3 production and the physiological response was only implied. We have investigated the possibility that the intracellular release of Ins(1,4,5)P3 mediates the muscarinic-cholinergic response is Xenopus oocytes, and we show here that intracellularly injected Ins(1,4,5)P3 mimics the muscarinic depolarizing chloride current in Xenopus oocytes. This is the first demonstration of a direct link between phosphoinositides metabolism and a neuro-transmitter-induced physiological response.  相似文献   

18.
Phosphoinositide-3-OH kinase (PI(3)K), activated through growth factor stimulation, generates a lipid second messenger, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is instrumental in signalling pathways that trigger cell activation, cytoskeletal rearrangement, survival and other reactions. However, some targets of PtdIns(3,4,5)P3 are yet to be discovered. We demonstrate that SWAP-70, a unique signalling protein, specifically binds PtdIns(3,4,5)P3. On stimulation by growth factors, cytoplasmic SWAP-70, which is dependent on PI(3)K but independent of Ras, moved to cell membrane rearrangements known as ruffles. However, mutant SWAP-70 lacking the ability to bind PtdIns(3,4,5)P3 blocked membrane ruffling induced by epidermal growth factor or platelet-derived growth factor. SWAP-70 shows low homology with Rac-guanine nucleotide exchange factors (GEFs), and catalyses PtdIns(3,4,5)P3-dependent guanine nucleotide exchange to Rac. SWAP-70-deficient fibroblasts showed impaired membrane ruffling after stimulation with epidermal growth factor, and failed to activate Rac fully. We conclude that SWAP-70 is a new type of Rac-GEF which, independently of Ras, transduces signals from tyrosine kinase receptors to Rac.  相似文献   

19.
Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) has an important function in cell regulation both as a precursor of second messenger molecules and by means of its direct interactions with cytosolic and membrane proteins. Biochemical studies have suggested a role for PtdIns(4,5)P2 in clathrin coat dynamics, and defects in its dephosphorylation at the synapse produce an accumulation of coated endocytic intermediates. However, the involvement of PtdIns(4,5)P2 in synaptic vesicle exocytosis remains unclear. Here, we show that decreased levels of PtdIns(4,5)P2 in the brain and an impairment of its depolarization-dependent synthesis in nerve terminals lead to early postnatal lethality and synaptic defects in mice. These include decreased frequency of miniature currents, enhanced synaptic depression, a smaller readily releasable pool of vesicles, delayed endocytosis and slower recycling kinetics. Our results demonstrate a critical role for PtdIns(4,5)P2 synthesis in the regulation of multiple steps of the synaptic vesicle cycle.  相似文献   

20.
Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号