首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T-cell signal transduction and the role of protein kinase C   总被引:3,自引:0,他引:3  
The T lymphocyte has a vital part to play in maintaining the host response to bacterial and viral infection and also appears to play a key pathological role in autoimmune diseases such as rheumatoid arthritis. In this review, we summarize the signalling pathways which trigger antigen-driven T-cell proliferation and examine the evidence which suggests that protein kinase C (PKC) is fundamental to this process. Finally, we discuss the therapeutic potential that PKC inhibitors may have in the treatment of autoimmune disease. Received 31 March 1998; received after revision 19 May 1998; accepted 19 May 1998  相似文献   

3.
MAP kinases in plant signal transduction   总被引:10,自引:0,他引:10  
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are implicated in a wide variety of biological processes. In plants there is evidence for MAPKs playing a role in the signaling of abiotic stresses, pathogens and plant hormones. The large number and divergence of plant MAPKs indicates that this ancient mechanism of bioinformatics is extensively used in plants and may provide a new molecular handle on old questions.  相似文献   

4.
Growth hormone signal transduction   总被引:1,自引:0,他引:1  
Growth hormone (GH) promotes animal growth by stimulating bone and cartilage cell proliferation, and influences carbohydrate and lipid metabolism. Some of these effects are brought about indirectly via somatomedin induction in hepatocytes, others by acting directly on the target cells. In either case, GH first binds to specific receptors on cells to trigger a sequence of biochemical events culminating in a biological response. Recently much has been learnt about the molecular structure of GH receptor, its binding to ligand, and the ensuing signal transduction events.  相似文献   

5.
When odorants bind to the sensory cilia of olfactory sensory neurons, the cells respond with an electrical output signal, typically a short train of action potentials. This review describes the present state of knowledge about the olfactory signal transduction process. In the last decade, a set of transduction molecules has been identified which help to explain many aspects of the sensory response. Odor-induced second-messenger production, activation of transduction channels, the central role of the ciliary Ca2+ concentration, as well as mechanisms that mediate adaptation, are all qualitatively understood on the basis of a consistent scheme for chemoelectrical transduction. This scheme, although necessarily incomplete, can serve as a working model for further experimentation which may reveal kinetical aspects of signal transduction processes in olfactory sensory neurons.  相似文献   

6.
Several independent groups have shown that lipid-dependent signal transduction systems operate in the nucleus and that they are regulated independently from their membrane and cytosolic counterparts. A sizable body of evidence suggests that nuclear lipid signaling controls critical biological functions such as cell proliferation and differentiation. Diacylglycerol is a fundamental lipid second messenger which is produced in the nucleus. The levels of nuclear diacylglycerol fluctuate during the cell cycle progression, suggesting that such a molecule has important regulatory roles. Most likely, nuclear diacylglycerol serves as a chemoattractant for some isoforms of protein kinase C that migrate to the nucleus in response to a variety of agonists. The nucleus also contains diacylglycerol kinases, i.e. the enzymes that, by converting diacylglycerol into phosphatidic acid, terminate diacylglycerol-dependent events. A number of diacylglycerol kinases encoded by separate genes are present in the mammalian genome. This review aims at highlighting the different isotypes of diacylglycerol kinases identified at the nuclear level as well as at discussing their potential function and regulation. Received 4 December 2001; received after revision 28 January 2002; accepted 31 January 2002  相似文献   

7.
Angiogenesis and signal transduction in endothelial cells   总被引:11,自引:0,他引:11  
Endothelial cells receive multiple information from their environment that eventually leads them to progress along all the stages of the process of formation of new vessels. Angiogenic signals promote endothelial cell proliferation, increased resistance to apoptosis, changes in proteolytic balance, cytoskeletal reorganization, migration and, finally, differentiation and formation of a new vascular lumen. We aim to review herein the main signaling cascades that become activated in angiogenic endothelial cells as well as the opportunities of modulating angiogenesis through pharmacological interference with these signaling mechanisms. We will deal mainly with the mitogen-activated protein kinases pathway, which is very important in the transduction of proliferation signals; the phosphatidylinositol-3-kinase/protein kinase B signaling system, particularly essential for the survival of the angiogenic endothelium; the small GTPases involved in cytoskeletal reorganization and migration; and the kinases associated to focal adhesions which contribute to integrate the pathways from the two main sources of angiogenic signals, i.e. growth factors and the extracellular matrix.Received 13 February 2004; received after revision 25 March 2004; accepted 19 April 2004  相似文献   

8.
ROPs in the spotlight of plant signal transduction   总被引:7,自引:0,他引:7  
Small guanine nucleotide binding proteins of the Rho family called ROP play a crucial role as regulators of signal transduction in plants. They participate in pathways that influence growth and development, and the adaptation of plants to various environmental situations. As members of the Ras superfamily, ROPs function as molecular switches cycling between a GDP-bound ‘off’ and a GTP-bound ‘on’ state in a strictly regulated manner. Latest research provided fascinating new insights into ROP regulation by novel guanine nucleotide exchange factors, unconventional GTPase activating proteins, and guanine nucleotide dissociation inhibitors, which apparently organize localized ROP activation. Important progress has also been made concerning signaling components upstream and downstream of the ROP cycle involving receptor-like serine/threonine kinases and effectors that can manipulate cytoskeletal dynamics, intracellular calcium levels, H2O2 production and further cellular targets. This review outlines the fast developing knowledge on ROP GTPases highlighting their specific features, regulation and roles in a cellular signaling context. Received 28 April 2006; received after revision 2 June 2006; accepted 29 June 2006  相似文献   

9.
Because expressed at a significant level at the membrane of human T cells, we made the hypothesis that the cellular prion protein (PrPc) could behave as a receptor, and be responsible for signal transduction. PrPc engagement by specific antibodies was observed to induce an increase in cytosolic calcium concentration and led to enhanced activity of Src protein tyrosine kinases. Antibodies to CD4 and CD59 did not influence calcium fluxes or signaling. The effect was maximal after the formation of a network involving avidin and biotinylated antibody to PrPc and was inhibited after raft disruption. PrPc localization was not restricted to rafts in resting cells but engagement was a prerequisite for signaling induction, with concomitant PrPc recruitment into rafts. These results suggest a role for PrPc in signaling pathways, and show that lateral redistribution of the protein into rafts is important for subsequent signal transduction.Received 22 July 2004; received after revision 10 September 2004; accepted 7 October 2004  相似文献   

10.
The mitochondrial oxidative phosphorylation system is responsible for providing the bulk of cellular ATP molecules. There is a growing body of information regarding the regulation of this process by a number of second messenger-mediated signal transduction mechanisms, although direct studies aimed at elucidating this regulation are limited. The main second messengers affecting mitochondrial signal transduction are cAMP and calcium. Other second messengers include ceramide and reactive oxygen species as well as nitric oxide and reactive nitrogen species. This review focuses on available data on the regulation of the mitochondrial oxidative phosphorylation system by signal transduction mechanisms and is organised according to the second messengers involved, because of their pivotal role in mitochondrial function. Future perspectives for further investigations regarding these mechanisms in the regulation of the oxidative phosphorylation system are formulated. Received 11 December 2005; received after revision 14 January 2006; accepted 6 February 2006  相似文献   

11.
Integrin-mediated signal transduction   总被引:23,自引:0,他引:23  
Integrins, expressed on virtually every cell type, are proteins that mediate cellular interactions with components of the extracellular matrix (ECM) and cell surface integral plasma membrane proteins. In addition, integrins interact with the cytoskeleton and through this process participate in cell migration, tissue organization, cell growth, haemostasis, inflammation, target recognition of lymphocytes and the differentiation of many cell types. Signals generated from ligand-integrin interactions are propagated via the integrin cytoplasmic tails to signal transduction pathways within the cell (outside-in signalling). Information from within the cell can also be transmitted to the outside via integrin affinity modulation (inside-out signalling). Protein tyrosine phosphorylation has a central role in integrin-initiated cell signalling, leading to cytoskeletal organization and focal adhesion formation. This review will examine the current understanding of integrin function, focusing on the intracellular consequences of integrin-ligand interaction.  相似文献   

12.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

13.
Tribbles: novel regulators of cell function; evolutionary aspects   总被引:3,自引:0,他引:3  
Identification of rate-limiting steps or components of intracellular second messenger systems holds promise to effectively interfere with these pathways under pathological conditions. The emerging literature on a recently identified family of signalling regulator proteins, called tribbles gives interesting clues for how these proteins seem to link several ‘independent’ signal processing systems together. Via their unique way of action, tribbles co-ordinate the activation and suppression of the various interacting signalling pathways and therefore appear to be key in determining cell fate while responding to environmental challenges. This review summarises our current understanding of tribbles function and also provides an evolutionary perspective on the various tribbles genes. Received 10 January 2006; received after revision 20 March 2006; accepted 5 April 2006  相似文献   

14.
Signal transduction pathways transduce information about the outside of the cell to the nucleus, regulating gene expression and cell fate. To reliably inform the cell about its surroundings, information transfer has to be robust against typical perturbation that a cell experiences. Robustness of several mammalian signaling pathways has been studied recently by quantitative experimentation and using mathematical modeling. Here, we review these studies, and describe the emerging concepts of robustness and the underlying mechanisms.  相似文献   

15.
16.
17.
The intracellular signaling pathways mediating the nuclear exclusion of the androgen receptor (AR) by melatonin were evaluated in PC3 cells stably transfected with the AR. The melatonin-induced nuclear exclusion of the AR by melatonin (100 nM, 3 h) was blocked by LY 83583 (an inhibitor of guanylyl cyclases). 8-Bromo-cGMP (a cell-permeable cGMP analog), mimicked the effect of melatonin, as did ionomycin (a calcium ionophore) and PMA [an activator of protein kinase C (PKC)], and their effects were blocked by GF-109203X (a selective PKC inhibitor). BAPTA (an intracellular calcium chelator) blocked the effects of melatonin and 8-bromo-cGMP but not of PMA. Inhibition or activation of the protein kinase A pathway did not affect basal or melatonin-mediated AR localization. We conclude that the melatonin-mediated rise in cGMP elicits AR nuclear exclusion via a pathway involving increased intracellular calcium and PKC activation. These results define a novel signaling pathway that regulates AR localization and androgen responses in target cells. Received 31 July 2001; received after revision 18 September 2001; accepted 30 October 2001  相似文献   

18.
Plexins: axon guidance and signal transduction   总被引:4,自引:2,他引:4  
Axon guidance represents a key stage in the formation of neuronal network. Axons are guided by a variety of guidance factors, such as semaphorins, ephrins and netrin. Plexins function as receptors for the repulsive axonal guidance molecules semaphorins. Intracellular domains of plexins are responsible for initiating cellular signal transduction inducing axon repulsion. Recent advances have revealed molecular mechanisms for plexin-mediated cytoskeletal reorganization, leading to repulsive responses, and small GTPases play important roles in this signaling. Plexin-B1 activates Rho through Rho-specific guanine nucleotide exchange factors, leading to neurite retraction. Plexin-B1 possesses an intrinsic GTPase-activating protein activity for R-Ras and induces growth cone collapse through R-Ras inactivation. In this review we survey current understanding of the signaling mechanisms of plexins.Received 13 January 2005; received after revision 3 February 2005; accepted 15 February 2005  相似文献   

19.
Signalling in viral entry   总被引:9,自引:0,他引:9  
Viral infections are serious battles between pathogens and hosts. They can result in cell death, elimination of the virus or latent infection keeping both cells and pathogens alive. The outcome of an infection is often determined by cell signalling. Viruses deliver genomes and proteins with signalling potential into target cells and thereby alter the metabolism of the host. Virus interactions with cell surface receptors can elicit two types of signals, conformational changes of viral particles, and intracellular signals triggering specific cellular reactions. Responses by cells include stimulation of innate and adaptive immunity, growth, proliferation, survival and apoptosis. In addition, virus-activated cell signalling boosts viral entry and gene delivery, as recently shown for adenoviruses and adeno-associated viruses. This review illustrates that multiple activation of host cells during viral entry profoundly impacts the elaborate relationship between hosts and viral pathogens. Received 13 September 2001; received after revision 23 October 2001; accepted 16 November 2001  相似文献   

20.
Light perception in higher plants   总被引:4,自引:0,他引:4  
Photosynthetic plants depend on sunlight as their energy source. Thus, they need to detect the intensity, quality and direction of this critical environmental factor and to respond properly by optimizing their growth and development. Perception of light is accomplished by several photoreceptors including phytochromes, blue/ultraviolet (UV)-A and UV-B light photoreceptors. In recent years, genetic, molecular genetic and cell biological approaches have significantly increased our knowledge about the structure and function of the photoreceptors, and allowed the identification of several light signal transduction components. Furthermore, this research led to fruitful interaction between different disciplines, such as molecular biology and ecology. It is safe to assume that we can expect more milestones in this research field in the upcoming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号