首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对非线性、不确定时滞对象,提出一种基于神经网络算法的非线性PID控制器。该控制器将传统PID的比例、积分和微分参数分别构造成关于误差信号的非线性函数,并将非线性比例运算单元、非线性积分运算单元和非线性微分运算单元分别作为隐层神经元的激励函数,从而构造将PID控制与神经网络控制融为一体的智能控制器。研究结果表明:采用此智能控制器有效解决了传统PID难以控制非线性对象的问题以及传统神经网络控制器隐层神经元节点数难以确定的问题,仿真结果验证了该智能控制器的有效性。  相似文献   

2.
将神经网络和PID控制器有机结合,形成一种基于RBF网络在线辨识、单神经元网络在线整定的自适应PID控制器,用于对主动队列管理(AQM)的拥塞控制.仿真结果表明,该控制器对负载队列的控制效果明显优于传统PID控制器.  相似文献   

3.
根据实际生产现场对控制的要求,提出了一种将PID控制与神经网络相结合,采用BP网络辨识未知的被控对象,使用单纯形算法寻找最优的PID控制参数,控制与学习并行的控制方案.并对二阶对象进行仿真研究,将其与单位阶跃响应进行了比较.  相似文献   

4.
提出了一种新型神经网络PID控制器,其学习速率是通过三层前向BP网络在线辨识学习,使神经元有较强的智能性、自适应和自学习的能力;同时,将Smith预估器与神经元PID控制器相结合,能更有效地抑制纯滞后的影响。仿真结果表明该控制器有较好的控制效果和鲁棒性。  相似文献   

5.
提出了一种基于神经网络的控制系统,将传统PID工程整定法与神经网络相结合,采用直接自适应控制方法,使基于神经网络的控制器在PID控制的基础上实现自适应控制,更有效地改善控制品质.  相似文献   

6.
神经网络仿PID参数自适应控制器及其应用   总被引:4,自引:0,他引:4  
介绍了基于BP神经网络的仿PID自适应控制器,给出了控制算法,推导了基于变形Elman网络的系统辨识算法,仿真及应用表明此方法是可行的。  相似文献   

7.
郭耀华 《科技信息》2010,(36):95-95
本文提出了一种采用FPGA实现神经网络PID控制器的设计方法。首先在理论上设计三层BP_PID控制器。其次在FPGA芯片上实现了设计的BP_PID控制器,利用VHDL语言采用自上而下的设计方法,设计了BP_PID控制器的各个模块,并在Quartus中进行了时序仿真测试。仿真结果表明,设计过程合理,硬件实现结果正确,为在工业控制领域广泛应用智能控制算法的硬件电路实现创造了条件。  相似文献   

8.
提出一种新的PID型神经网络的自适应控制系统,该控制系统采用对角递归神经网络辨识对象的正向模型,采用一种新型神经网络控制器产生控制量,与常规PID控制不同的是,该控制量不再是误差信号的比例、积分和微分量的简单线性组合,而是这些信号的一种非线性组合,从而可以有效地解决常规PID控制器存在的快速性和超调量之间的矛盾.仿真实验表明,这种新型控制系统具有较强的自适应性和鲁棒性.  相似文献   

9.
基于PID神经网络的非线性系统辨识与控制   总被引:2,自引:0,他引:2  
针对工业控制领域中非线性系统采用传统的控制方法不能达到满意的控制效果,提出一种基于P ID神经网络的控制方案,以对其进行辨识和控制。将P ID神经网络引入控制系统中,既具有常规P ID控制结构简单、参数物理意义明确等优点,同时又具有神经网络的并行结构和学习记忆功能及非线性映射能力。仿真结果表明:该控制系统响应速度快、超调量小、稳态精度高,能够快速跟踪系统输出并进行有效控制,且具有一定的自适应性和鲁棒性,满足实时控制的要求。  相似文献   

10.
基于一种简化的神经网络结构及其相应的快速辨识算法,提出了控制非线性系统的自适应预估方法.它综合了自适应预估控制在控制线性系统中的良好特性和神经网络在辨识、控制非线性系统中的高精确性.大量实验表明该控制器设计简单,适应力强,鲁棒性好,能有效控制一类非线性对象.  相似文献   

11.
介绍了一种基于神经网络自学习PID控制器,该控制器能通过自学习不断进行适应性控制,以保证系统的输出符合实际应用的要求, 其主要特点是采用线性预测模型来近似确定控制参数,进而进行神经网络控制,仿真结果表明该方法有较好的效果。  相似文献   

12.
一种基于模糊神经网络的自适应PID智能控制器   总被引:7,自引:0,他引:7  
设计了一种新的基于模糊神经网络的自适应PID智能控制器,该系统利用模糊神经网络对被控对象进行模糊辨识,同时,采用BP学习算法的神经网络自适应地调整PID控制器的参数,将模糊技术、神经网络与PID控制综合起来,从而实现PID控制的自适应和智能化。仿真实验表明,该控制器具有较高的控制品质。  相似文献   

13.
王曼  黄友锐 《科技信息》2012,(1):116-117
针对PID控制器,本文介绍了一种基于小波神经网络的免疫PID控制器。由于小波变换具有较好的时频局部性.神经网络拥有较强大的非线性映射的能力、自适应、自学习等优势,将规范正交的小波函数与神经网络的基函数相结合构成小波神经网络.该网络同时具有小波和神经网络的优点,本文用小波神经网络来逼近免疫PID的函数,试验以及仿真结果表明,本文介绍的控制器性能优于其它类型免疫PID控制器。  相似文献   

14.
三自由度直升机模型的PID神经网络控制研究   总被引:1,自引:0,他引:1  
以固高科技有限公司研制的三自由度直升机模型为控制对象,进行了PID神经网络控制器的设计.仿真结果表明,该控制器能够极大地改善姿态控制系统性能.  相似文献   

15.
改进型神经网络参数自学习PID控制器的实现   总被引:2,自引:0,他引:2  
用BP神经网络自学习PID控制器的3个可调参数KP,KI和KD,实现最佳组合的PID控制,在调整神经网络的权值算法中,用被控对象的预测模得到预测输出值来改进学习算法。该方法用于异步电动机直接矩控制中效果明显。  相似文献   

16.
一类非线性离散系统的神经网络自适应控制   总被引:1,自引:0,他引:1  
针对一类控制方向未知的单输入单输出非线性离散系统,将常规增量式数字PID控制器与自适应神经网络控制项相结合,提出了一种能够保证闭环系统稳定的自适应神经网络控制方法.常规PID控制器用来保证近似线性系统的稳定,自适应神经网络项用来处理非线性项对闭环系统的影响.在神经网络权值修正律中引入离散Nussbaum增益来解决被控系统控制方向未知的问题.证明了闭环系统的所有信号有界,且跟踪误差收敛于紧集,并通过仿真验证了所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号