首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
金钟面板堆石坝应力变形三维弹塑性有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对金钟水利枢纽面板堆石坝进行了三维弹塑性有限元分析,模拟了坝体材料分区、填筑及蓄水过程和面板的分缝,采用双屈服面模型模拟堆石体的变形特征.根据数值分析的结果,对竣工期和蓄水期坝体堆石和面板的应力变形规律进行了讨论.  相似文献   

2.
为了能够较好地模拟面板堆石坝的施工及蓄水过程,利用MSC.Marc软件的子程序功能实现非线性弹性邓肯-张模型,通过生死单元技术进行分级加载,从而对面板堆石坝进行非线性有限元计算.对某混凝土面板堆石坝进行非线性分析,文中给出了河床中央剖面(2号剖面)和面板应力和变形的等值线分布图以及1号和3号剖面的应力和位移值.计算结果表明:坝体和应力以及变形规律比较好,但面板在靠近河床两端出现较大的拉应力,实际工程应予以重视.  相似文献   

3.
河床地形是影响面板堆石坝应力变形特性的重要因素.应用非线性有限元方法,对坝基倾向下游及河床中部存在凸起的某在建面板堆石坝进行研究,得出存在该地形的面板堆石坝的应力变形规律.结果表明:坝基倾向下游地形会扩大坝体向下游位移区域、增大向下游位移数值并使最大沉降位置向下游偏移;同时会使面板靠近趾板附近产生拉应力;河床中部凸起地...  相似文献   

4.
针对某V型河谷上的心墙堆石坝,采用邓肯-张E-v模型描述堆石料,Goodman单元模型描述土与结构体的接触面,三维有限元方法对比分析不同河谷宽高比时竣工期心墙堆石坝的应力和变形。结果表明:河谷地形对心墙堆石坝应力变形影响显著,河谷宽高比越小,竣工期坝体沉降、顺河向水平位移、纵断面坝轴向水平位移都越小;河谷宽高比越大,竣工期坝基覆盖层的沉降越大,防渗墙的应力也越大。  相似文献   

5.
以某混凝土面板堆石坝为例,进行应力场和温度场的耦合计算,分析坝体和面板的应力变形,以及坝体变形对面板的影响.结果显示:坝体的最大水平位移和最大沉降发生在坝体上游面中部;坝体最大主应力发生在坝体底部,且随季节温度升高而增大,坝体最小主应力发生在坝顶防浪墙,坝体内部无拉应力;面板最大拉应力发生在距坝底1/2处,位于正常运行期的库水位以下,混凝土性能易弱化导致面板损毁,所以面板开裂在此处发生的可能性最大.  相似文献   

6.
针对面板堆石坝的脱空问题,以三板溪水电站面板堆石坝为工程背景,基于FLAC 3D软件的内嵌语言,二次开发模拟面板堆石坝填筑施工和蓄水过程模拟的计算程序。通过在面板和垫层之间设置接触面来模拟面板与垫层的脱空效应,进而深入研究面板在施工和运行阶段的脱空机理。研究成果表明,施工期面板脱空的主要原因源自坝体自重,蓄水期面板脱空的主控因素是蓄水引起的应力重分布以及堆石料流变变形。  相似文献   

7.
利用结构模型试验得到的周边缝止水结构的数值分析模型,对黑泉砂砾石面板坝进行三维弹塑性有限元分析,模拟大坝施工及蓄水过程,预测大坝坝体、面板及各类接缝的应力与位移,并将计算结果与止水结构破坏试验结果以及已建面板坝的接缝观测资源进行了对比,结果表明,坝体、面板的变形和应力符合一般规律,面板缝和周边缝位移在正常范围内,新型止水结构有较好的变形能力。  相似文献   

8.
一座200m级高面板坝的变形和应力计算研究   总被引:2,自引:0,他引:2  
利用三维非线性有限元分析方法,结合一座拟建中233m高的面板堆石坝,对坝体的变形和应力进行了预测。计算整理了面板的应变,结合已建类似工程的实测资料,对面板进行了初步的防裂分析。研究结果表明:蓄水期面板的应变极值与坝高的相关性不明显,但面板分期施工将导致其变形和应力更为复杂,需对大坝填筑的施工顺序进行优化设计;若采用合理的材料分区,且计算坝体的变形不超过限值,则面板坝方案在技术上是成立的。  相似文献   

9.
汶川地震中紫坪铺混凝土面板堆石坝震害分析   总被引:3,自引:0,他引:3  
汶川地震中,紫坪铺混凝土面板堆石坝坝坡、面板和结构缝均出现一定程度的破坏,大坝发生了整体变形.根据这些震害现象,结合振动台模型试验和数值分析的成果,从坝坡破坏性态、坝顶加速度反应、面板应力与变形、大坝的地震变形和面板缝的破坏形式几方面讨论了面板堆石坝破坏机理和抗震性能.在此基础上,对面板堆石坝抗震设计的着力点和抗震措施提出了建议:在面板堆石坝抗震设计中,高面板堆石坝上部面板在地震中可能出现的高应力区是着重点之一;应该考虑坝体地震永久变形对面板附加应力的影响;应特别注意坝顶区堆石体的稳定,建议选择钉结护面板加固方案,从而提高地震时坝顶区堆石体的整体稳定性.  相似文献   

10.
两河口心墙堆石坝应力变形及参数敏感性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Duncan-Chang的E-ν非线性弹性模型对两河口心墙堆石坝进行了三维有限元应力变形计算, 分析了堆石坝在填筑期及蓄水期的应力应变特性. 在此基础上, 研究了坝体下游次堆石分区范围变化及其部分模型参数变化、 心墙底部高塑性土厚度变化及其部分参数变化对坝体应力变形、 心墙拱效应和抗水力劈裂能力的影响, 进一步认识了心墙堆石坝的应力应变特性.  相似文献   

11.
采用三参数流变模型,运用有限元法对金钟面板堆石坝进行三维流变分析,得到了考虑堆石流变后坝体、面板的应力变形.分析研究了堆石流变对混凝土面板堆石坝坝体、面板应力变形特性的影响.结果表明,考虑堆石的流变效应后,坝体变形有所增加,坝内拉应力区域变大,最大拉、压应力值有所增加;面板的挠度和轴向变形都有所增加,面板的拉应力区域和拉应力值也有所增加,而面板压应力区域有所减少,但最大压应力值却有所增加.  相似文献   

12.
主次堆石体的合理分区直接影响到面板应力、变形、稳定性以及工程造价.论文以蓼叶水库混凝土面板堆石坝为背景,采用Duncan-Chang EK非线性弹性模型,利用ANSYS中的APDL语言二次开发模型单元,进行3种不同的主次堆石体设计方案(仰倾坡比1 : 0.2.俯倾坡比1 : 0.2,俯倾坡比1 : 0.6)的数值计算和...  相似文献   

13.
溪洛渡拱坝蓄水初期出现了较为明显的谷幅收缩现象,且量值远超同类工程,有必要开展谷幅收缩变形对拱坝变形及应力状态的影响研究。针对坝体已经历的三次完整蓄水-消落过程,对各条测线谷幅变形进行函数拟合,在此基础上,计算了各个蓄水-消落周期下,正常蓄水、死水位工况下坝体变位和坝体应力,对比分析了考虑谷幅收缩变形对大坝位移、应力及分布规律的影响。结果表明,正常蓄水工况下,在变形方面,一定幅度的谷幅变形引起坝体向上游变形趋势,可以部分抵消水沙压力造成的坝体向下游变形作用,使大坝变形减小;在应力方面,一定幅度的谷幅收缩会大大降低上游坝面坝踵拉应力和下游面坝体压应力,改善大坝受力状态。死水位时,随着谷幅收缩的加大,上游面主压应力持续增加,下游坝面主压应力先减小后增大,并在下游面将产生一定拉应力。研究表明,当前谷幅变形作用下,大坝具有较大的安全裕度。在预测极限谷幅状态下(VDL04测线谷幅收缩70.04 mm),溪洛渡高拱坝应力应变处于安全状态。  相似文献   

14.
土石坝流变非线性分析   总被引:5,自引:0,他引:5  
采用流变学理论,选取Maxwell模型和H=K模型模拟土石料的流变特性,探讨土石料流变特性对土石坝应力、位移的影响,对梅溪混凝土面板堆石坝实例进行计算分析,结果表明考虑土石料的流变特性能更准确地反映土石坝施工期和运行期的实际工作性态。  相似文献   

15.
对某水库混凝土面板堆石坝的坝体内部位移、面板应变、坝体渗流等进行了安全监测,并对影响监测结果的主要因素(如库水位、温度、降雨、位置等)以及观测结果的规律进行了分析。在此基础上,对大坝的总体性状进行了评价。  相似文献   

16.
对丰坪水库混凝土面板堆石坝的坝体内部位移、面板应变、坝体渗流等进行了安全监测,并对影响监测结果的主要因素(如库水位、温度、降雨、位置等)以及观测结果的规律进行了分析。在此基础上,对大坝的总体性状进行了评价。  相似文献   

17.
300m级弧形直心墙超高堆石坝应力变形分析   总被引:1,自引:0,他引:1  
对某300m级超高直心墙堆石坝及作为比较方案的弧形直心墙堆石坝进行了三维有限元应力变形计算.对2种坝型在蓄水期心墙的应力、变形进行了比较分析,结果表明:蓄水期,弧形心墙堆石坝比直心墙堆石坝的水平位移和沉降略小;弧形心墙坝的心墙拱效应较弱,其抗水力劈裂能力优于直心墙堆石坝;弧形心墙堆石坝坝肩处的应力水平小于直心墙堆石坝的...  相似文献   

18.
针对三峡水利枢纽工程非溢流重力坝横断面上的应力和位移进行模型试验研究.使用DH3816静态应变测试系统和千分位移计分别测量模型的应变和位移,对测试值进行计算分析和图形绘制.结果表明坝体的上游面出现了显著的拉应力集中现象,最大值出现在坝踵处,同时在下游面出现了较大的竖直压应力,最大值出现在坝趾处,但应力值均小于坝体混凝土和地基的抗拉及抗压强度;坝体位移呈抛物线状,坝体处于弹性状态,大坝运行状态较为正常.  相似文献   

19.
利用扩展有限单元法在求解不连续问题上的独有优势,在裂纹面以水压力方式模拟水力劈裂荷载,以解决裂纹扩展时涉及裂纹面非线性和移动边界问题。针对某待建混凝土重力坝,通过ABAQUS软件建立黏聚力裂纹扩展模型模拟水力劈裂,采用上游超载静水压力模拟高水压作用,研究不同裂纹长度、角度及裂纹面水压力对裂纹扩展的影响。结果表明:在相同初始裂纹夹角和水压作用下,裂纹起裂方向与预置裂纹方向夹角值基本一致;预置裂纹与水平向夹角为45°时,裂纹扩展深度最浅;随着裂纹面水压力数值增大,坝踵预置裂纹逐渐向坝基底部扩展;随着坝体折断面预置裂纹长度的增加,预置裂纹尖端周围应力值逐步增大,坝顶和主裂纹最大张开位移也随之增大,最终形成一条主裂纹并不断地向下游坝基面进行扩展,结构承载能力逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号