首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Barna M  Pandolfi PP  Niswander L 《Nature》2005,436(7048):277-281
The vertebrate limb initially develops as a bud of mesenchymal cells that subsequently aggregate in a proximal to distal (P-D) sequence to give rise to cartilage condensations that prefigure all limb skeletal components. Of the three cardinal limb axes, the mechanisms that lead to establishment and patterning of skeletal elements along the P-D axis are the least understood. Here we identify a genetic interaction between Gli3 (GLI-Kruppel family member 3) and Plzf (promyelocytic leukaemia zinc finger, also known as Zbtb16 and Zfp145), which is required specifically at very early stages of limb development for all proximal cartilage condensations in the hindlimb (femur, tibia, fibula). Notably, distal condensations comprising the foot are relatively unperturbed in Gli3(-/-);Plzf(-/-) mouse embryos. We demonstrate that the cooperative activity of Gli3 and Plzf establishes the correct temporal and spatial distribution of chondrocyte progenitors in the proximal limb-bud independently of known P-D patterning markers and overall limb-bud size. Moreover, the limb defects in Gli3(-/-);Plzf(-/-) embryos correlate with the transient death of a specific subset of proximal mesenchymal cells that express bone morphogenetic protein receptor, type 1B (Bmpr1b) at the onset of limb development. These findings suggest that the development of proximal and distal skeletal elements is distinctly regulated early during limb-bud formation. The initial division of the vertebrate limb into two distinct molecular domains is consistent with fossil evidence indicating that the upper and lower extremities of the limb have different evolutionary origins.  相似文献   

2.
3.
Mariani FV  Ahn CP  Martin GR 《Nature》2008,453(7193):401-405
Half a century ago, the apical ectodermal ridge (AER) at the distal tip of the tetrapod limb bud was shown to produce signals necessary for development along the proximal-distal (P-D) axis, but how these signals influence limb patterning is still much debated. Fibroblast growth factor (FGF) gene family members are key AER-derived signals, with Fgf4, Fgf8, Fgf9 and Fgf17 expressed specifically in the mouse AER. Here we demonstrate that mouse limbs lacking Fgf4, Fgf9 and Fgf17 have normal skeletal pattern, indicating that Fgf8 is sufficient among AER-FGFs to sustain normal limb formation. Inactivation of Fgf8 alone causes a mild skeletal phenotype; however, when we also removed different combinations of the other AER-FGF genes, we obtained unexpected skeletal phenotypes of increasing severity, reflecting the contribution that each FGF can make to the total AER-FGF signal. Analysis of the compound mutant limb buds revealed that, in addition to sustaining cell survival, AER-FGFs regulate P-D-patterning gene expression during early limb bud development, providing genetic evidence that AER-FGFs function to specify a distal domain and challenging the long-standing hypothesis that AER-FGF signalling is permissive rather than instructive for limb patterning. We discuss how a two-signal model for P-D patterning can be integrated with the concept of early specification to explain the genetic data presented here.  相似文献   

4.
5.
Dahn RD  Davis MC  Pappano WN  Shubin NH 《Nature》2007,445(7125):311-314
The genetic mechanisms regulating tetrapod limb development are well characterized, but how they were assembled during evolution and their function in basal vertebrates is poorly understood. Initial studies report that chondrichthyans, the most primitive extant vertebrates with paired appendages, differ from ray-finned fish and tetrapods in having Sonic hedgehog (Shh)-independent patterning of the appendage skeleton. Here we demonstrate that chondrichthyans share patterns of appendage Shh expression, Shh appendage-specific regulatory DNA, and Shh function with ray-finned fish and tetrapods. These studies demonstrate that some aspects of Shh function are deeply conserved in vertebrate phylogeny, but also highlight how the evolution of Shh regulation may underlie major morphological changes during appendage evolution.  相似文献   

6.
Kmita M  Tarchini B  Zàkàny J  Logan M  Tabin CJ  Duboule D 《Nature》2005,435(7045):1113-1116
Vertebrate HoxA and HoxD cluster genes are required for proper limb development. However, early lethality, compensation and redundancy have made a full assessment of their function difficult. Here we describe mice that are lacking all Hoxa and Hoxd functions in their forelimbs. We show that such limbs are arrested early in their developmental patterning and display severe truncations of distal elements, partly owing to the absence of Sonic hedgehog expression. These results indicate that the evolutionary recruitment of Hox gene function into growing appendages might have been crucial in implementing hedgehog signalling, subsequently leading to the distal extension of tetrapod appendages. Accordingly, these mutant limbs may be reminiscent of an ancestral trunk extension, related to that proposed for arthropods.  相似文献   

7.
Zeng X  Goetz JA  Suber LM  Scott WJ  Schreiner CM  Robbins DJ 《Nature》2001,411(6838):716-720
The secreted protein Sonic hedgehog (Shh) exerts many of its patterning effects through a combination of short- and long-range signalling. Three distinct mechanisms, which are not necessarily mutually exclusive, have been proposed to account for the long-range effects of Shh: simple diffusion of Shh, a relay mechanism in which Shh activates secondary signals, and direct delivery of Shh through cytoplasmic extensions, termed cytonemes. Although there is much data (using soluble recombinant Shh (ShhN)) to support the simple diffusion model of long-range Shh signalling, there has been little evidence to date for a native form of Shh that is freely diffusible and not membrane-associated. Here we provide evidence for a freely diffusible form of Shh (s-ShhNp) that is cholesterol modified, multimeric and biologically potent. We further demonstrate that the availability of s-ShhNp is regulated by two functional antagonists of the Shh pathway, Patched (Ptc) and Hedgehog-interacting protein (Hip). Finally, we show a gradient of s-ShhNp across the anterior-posterior axis of the chick limb, demonstrating the physiological relevance of s-ShhNp.  相似文献   

8.
9.
M Maden  D E Ong  D Summerbell  F Chytil 《Nature》1988,335(6192):733-735
  相似文献   

10.
11.
Overexpression of the polycomb group gene Bmi1 promotes cell proliferation and induces leukaemia through repression of Cdkn2a (also known as ink4a/Arf) tumour suppressors. Conversely, loss of Bmi1 leads to haematological defects and severe progressive neurological abnormalities in which de-repression of the ink4a/Arf locus is critically implicated. Here, we show that Bmi1 is strongly expressed in proliferating cerebellar precursor cells in mice and humans. Using Bmi1-null mice we demonstrate a crucial role for Bmi1 in clonal expansion of granule cell precursors both in vivo and in vitro. Deregulated proliferation of these progenitor cells, by activation of the sonic hedgehog (Shh) pathway, leads to medulloblastoma development. We also demonstrate linked overexpression of BMI1 and patched (PTCH), suggestive of SHH pathway activation, in a substantial fraction of primary human medulloblastomas. Together with the rapid induction of Bmi1 expression on addition of Shh or on overexpression of the Shh target Gli1 in cerebellar granule cell cultures, these findings implicate BMI1 overexpression as an alternative or additive mechanism in the pathogenesis of medulloblastomas, and highlight a role for Bmi1-containing polycomb complexes in proliferation of cerebellar precursor cells.  相似文献   

12.
13.
14.
S Noji  T Nohno  E Koyama  K Muto  K Ohyama  Y Aoki  K Tamura  K Ohsugi  H Ide  S Taniguchi 《Nature》1991,350(6313):83-86
Retinoic acid is a putative morphogen in limb formation in the chick and other vertebrates. In chick limb formation, it is thought that retinoic acid is released from the zone of polarizing activity (ZPA) and the concentration gradient of retinoic acid formed from the posterior to the anterior provides positional cues for digit formation. Implantation of a bead containing retinoic acid at the anterior margin of the limb bud induces a mirror-image symmetrical duplication of the digit pattern similar to that observed when the ZPA is grafted into the anterior margin of the host limb bud. Also, the level of endogenous retinoic acid (25 nM on average) is higher in the posterior one third of the limb bud. We found that when the bead containing either retinoic acid or an analogue but not the ZPA, was implanted in the anterior margin of the chick limb bud, expression of the retinoic acid receptor type-beta gene was induced around the bead within 4 h. These results indicate that exogenous retinoic acid is not identical with the ZPA morphogen. As the anterior tissue exposed to retinoic acid has polarizing activity, we conclude that the primary function of exogenous retinoic acid is to induce polarizing activity in the limb bud.  相似文献   

15.
The skeletal muscles of the limbs develop from myogenic progenitors that originate in the paraxial mesoderm and migrate into the limb-bud mesenchyme. Among the genes known to be important for muscle development in mammalian embryos are those encoding the basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs; MyoD, Myf5, myogenin and MRF4) and Pax3, a paired-type homeobox gene that is critical for the development of limb musculature. Mox1 and Mox2 are closely related homeobox genes that are expressed in overlapping patterns in the paraxial mesoderm and its derivatives. Here we show that mice homozygous for a null mutation of Mox2 have a developmental defect of the limb musculature, characterized by an overall reduction in muscle mass and elimination of specific muscles. Mox2 is not needed for the migration of myogenic precursors into the limb bud, but it is essential for normal appendicular muscle formation and for the normal regulation of myogenic genes, as demonstrated by the downregulation of Pax3 and Myf5 but not MyoD in Mox2-deficient limb buds. Our findings show that the MOX2 homeoprotein is an important regulator of vertebrate limb myogenesis.  相似文献   

16.
In urodele amphibians, the progenitor cells that regenerate amputated limbs (known as the blastema) normally replace only the missing structures. After systemic delivery of retinoic acid (RA), more proximal structures are also formed, indicating that RA can control position specification in the proximal-distal axis of the regenerating limb. According to dose and experimental context, retinoids can also re-specify the anteroposterior axis of the limb, induce deletions of skeletal elements, or block re-growth completely. To study the molecular basis of these morphogenetic effects, we screened complementary DNA libraries of newt regenerative tissues (limbs and tails) for hormone nuclear receptors activated by RA. Two functional retinoic acid receptors (RARs) were identified, one of which is the newt homologue of the human alpha-receptor (RAR alpha). The second receptor, called RAR delta, is novel. Sequence analysis suggests that the composite newt RAR previously reported is chimaeric, consisting of 5'RAR-beta-like and 3' RAR delta clones. We conclude that multiple RARs are expressed during limb regeneration in amphibians and suggest that receptor heterogeneity may underlie the different effects of retinoids on limb morphogenesis.  相似文献   

17.
18.
Conserved regulation of proximodistal limb axis development by Meis1/Hth   总被引:1,自引:0,他引:1  
Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes. However, the molecular mechanism by which limb cells acquire their proximodistal (P-D) identity is unknown. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus, and resembling the distribution of the Drosophila homologues homothorax (hth) and extradenticle (exd); that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P-D axis of the limb.  相似文献   

19.
V Giguère  E S Ong  R M Evans  C J Tabin 《Nature》1989,337(6207):566-569
Retinoic acid is known to have dramatic effects on vertebrate limb pattern in development and regeneration, supporting a model in which a gradient of retinoic acid serves as a morphogen to differentially supply positional information to a developing limb. The discovery of a retinoic acid receptor (RAR) and its homology to the steroid and thyroid hormone receptors provided a potential molecular mechanism for limb morphogenesis. One prediction of this model is that the receptor must be expressed in the developing and regenerating limb anlage. We investigated the expression of the RAR in the adult newt, Notophthalmus viridescens, whose amputated limbs are capable of regenerating and upon which retinoic acid can act to alter pattern. We report the cloning of cDNAs encoding a functional newt RAR and the localization of high and uniform levels of RAR mRNA specifically in the regenerating cells that control limb pattern. These results indicate that the morphogenic field is established through differential activation of pre-existing retinoic acid receptors rather than differential expression of the RAR gene.  相似文献   

20.
T Lufkin  M Mark  C P Hart  P Dollé  M LeMeur  P Chambon 《Nature》1992,359(6398):835-841
Murine Hox genes have been postulated to play a role in patterning of the embryonic body plan. Gene disruption studies have suggested that for a given Hox complex, patterning of cell identity along the antero-posterior axis is directed by the more 'posterior' (having a more posterior rostral boundary of expression) Hox proteins expressed in a given cell. This supports the 'posterior prevalence' model, which also predicts that ectopic expression of a given Hox gene would result in altered structure only in regions anterior to its normal domain of expression. To test this model further, we have expressed the Hox-4.2 gene more rostrally than its normal mesoderm anterior boundary of expression, which is at the level of the first cervical somites. This ectopic expression results in a homeotic transformation of the occipital bones towards a more posterior phenotype into structures that resemble cervical vertebrae, whereas it has no effect in regions that normally express Hox-4.2. These results are similar to the homeotic posteriorization phenomenon generated in Drosophila by ectopic expression of genes of the homeotic complex HOM-C (refs 7-10; reviewed in ref. 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号