共查询到20条相似文献,搜索用时 0 毫秒
1.
Jianmin Shi 《Journal of forecasting》2016,35(3):250-262
Model uncertainty and recurrent or cyclical structural changes in macroeconomic time series dynamics are substantial challenges to macroeconomic forecasting. This paper discusses a macro variable forecasting methodology that combines model uncertainty and regime switching simultaneously. The proposed predictive regression specification permits both regime switching of the regression parameters and uncertainty about the inclusion of forecasting variables by employing Bayesian model averaging. In an empirical exercise involving quarterly US inflation, we observed that our Bayesian model averaging with regime switching leads to substantial improvements in forecast performance, particularly in the medium horizon (two to four quarters). Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
2.
Youngjin Hwang 《Journal of forecasting》2017,36(5):581-596
The specification choices of vector autoregressions (VARs) in forecasting are often not straightforward, as they are complicated by various factors. To deal with model uncertainty and better utilize multiple VARs, this paper adopts the dynamic model averaging/selection (DMA/DMS) algorithm, in which forecasting models are updated and switch over time in a Bayesian manner. In an empirical application to a pool of Bayesian VAR (BVAR) models whose specifications include level and difference, along with differing lag lengths, we demonstrate that specification‐switching VARs are flexible and powerful forecast tools that yield good performance. In particular, they beat the overall best BVAR in most cases and are comparable to or better than the individual best models (for each combination of variable, forecast horizon, and evaluation metrics) for medium‐ and long‐horizon forecasts. We also examine several extensions in which forecast model pools consist of additional individual models in partial differences as well as all level/difference models, and/or time variations in VAR innovations are allowed, and discuss the potential advantages and disadvantages of such specification choices. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
Jonathan H. Wright 《Journal of forecasting》2009,28(2):131-144
Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal‐weighted averaging of the forecasts from a large number of different models, each of which is a linear regression relating inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian model averaging for pseudo out‐of‐sample prediction of US inflation, and find that it generally gives more accurate forecasts than simple equal‐weighted averaging. This superior performance is consistent across subsamples and a number of inflation measures. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
In this paper we present an intelligent decision‐support system based on neural network technology for model selection and forecasting. While most of the literature on the application of neural networks in forecasting addresses the use of neural network technology as an alternative forecasting tool, limited research has focused on its use for selection of forecasting methods based on time‐series characteristics. In this research, a neural network‐based decision support system is presented as a method for forecast model selection. The neural network approach provides a framework for directly incorporating time‐series characteristics into the model‐selection phase. Using a neural network, a forecasting group is initially selected for a given data set, based on a set of time‐series characteristics. Then, using an additional neural network, a specific forecasting method is selected from a pool of three candidate methods. The results of training and testing of the networks are presented along with conclusions. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
5.
This paper utilizes for the first time age‐structured human capital data for economic growth forecasting. We concentrate on pooled cross‐country data of 65 countries over six 5‐year periods (1970–2000) and consider specifications chosen by model selection criteria, Bayesian model averaging methodologies based on in‐sample and out‐of‐sample goodness of fit and on adaptive regression by mixing. The results indicate that forecast averaging and exploiting the demographic dimension of education data improve economic growth forecasts systematically. In particular, the results are very promising for improving economic growth predictions in developing countries. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
A Bayesian procedure for forecasting S‐shaped growth is introduced and compared to classical methods of estimation and prediction using three variants of the logistic functional form and annual times series of the diffusion of music compact discs in twelve countries. The Bayesian procedure was found not only to improve forecast accuracy, using the medians of the predictive densities as point forecasts, but also to produce intervals with a width and asymmetry more in accord with the outcomes than intervals from the classical alternative. While the analysis in this paper focuses on logistic growth, the problem is set up so that the methods are transportable to other characterizations of the growth process. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
7.
Martin Feldkircher 《Journal of forecasting》2012,31(4):361-376
In this study we evaluate the forecast performance of model‐averaged forecasts based on the predictive likelihood carrying out a prior sensitivity analysis regarding Zellner's g prior. The main results are fourfold. First, the predictive likelihood does always better than the traditionally employed ‘marginal’ likelihood in settings where the true model is not part of the model space. Secondly, forecast accuracy as measured by the root mean square error (RMSE) is maximized for the median probability model. On the other hand, model averaging excels in predicting direction of changes. Lastly, g should be set according to Laud and Ibrahim (1995: Predictive model selection. Journal of the Royal Statistical Society B 57 : 247–262) with a hold‐out sample size of 25% to minimize the RMSE (median model) and 75% to optimize direction of change forecasts (model averaging). We finally apply the aforementioned recommendations to forecast the monthly industrial production output of six countries, beating for almost all countries the AR(1) benchmark model. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
Gabriele Di Filippo 《Journal of forecasting》2015,34(8):619-648
The paper forecasts consumer price inflation in the euro area (EA) and in the USA between 1980:Q1 and 2012:Q4 based on a large set of predictors, with dynamic model averaging (DMA) and dynamic model selection (DMS). DMA/DMS allows not solely for coefficients to change over time, but also for changes in the entire forecasting model over time. DMA/DMS provides on average the best inflation forecasts with regard to alternative approaches (such as the random walk). DMS outperforms DMA. These results are robust for different sample periods and for various forecast horizons. The paper highlights common features between the USA and the EA. First, two groups of predictors forecast inflation: temporary fundamentals that have a frequent impact on inflation but only for short time periods; and persistent fundamentals whose switches are less frequent over time. Second, the importance of some variables (particularly international food commodity prices, house prices and oil prices) as predictors for consumer price index inflation increases when such variables experience large shocks. The paper also shows that significant differences prevail in the forecasting models between the USA and the EA. Such differences can be explained by the structure of these respective economies. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
9.
Travis J. Berge 《Journal of forecasting》2015,34(6):455-471
Four methods of model selection—equally weighted forecasts, Bayesian model‐averaged forecasts, and two models produced by the machine‐learning algorithm boosting—are applied to the problem of predicting business cycle turning points with a set of common macroeconomic variables. The methods address a fundamental problem faced by forecasters: the most useful model is simple but makes use of all relevant indicators. The results indicate that successful models of recession condition on different economic indicators at different forecast horizons. Predictors that describe real economic activity provide the clearest signal of recession at very short horizons. In contrast, signals from housing and financial markets produce the best forecasts at longer forecast horizons. A real‐time forecast experiment explores the predictability of the 2001 and 2007 recessions. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Last Night a Shrinkage Saved My Life: Economic Growth,Model Uncertainty and Correlated Regressors
下载免费PDF全文

Paul Hofmarcher Jesús Crespo Cuaresma Bettina Grün Kurt Hornik 《Journal of forecasting》2015,34(2):133-144
We compare the predictive ability of Bayesian methods which deal simultaneously with model uncertainty and correlated regressors in the framework of cross‐country growth regressions. In particular, we assess methods with spike and slab priors combined with different prior specifications for the slope parameters in the slab. Our results indicate that moving away from Gaussian g‐priors towards Bayesian ridge, LASSO or elastic net specifications has clear advantages for prediction when dealing with datasets of (potentially highly) correlated regressors, a pervasive characteristic of the data used hitherto in the econometric literature. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Harald Hruschka 《Journal of forecasting》2007,26(2):113-127
The multinomial probit model introduced here combines heterogeneity across households with flexibility of the (deterministic) utility function. To achieve flexibility deterministic utility is approximated by a neural net of the multilayer perceptron type. A Markov Chain Monte Carlo method serves to estimate heterogeneous multinomial probit models which fulfill economic restrictions on signs of (marginal) effects of predictors (e.g., negative for price). For empirical choice data the heterogeneous multinomial probit model extended by a multilayer perceptron clearly outperforms all the other models studied. Moreover, replacing homogeneous by heterogeneous reference price mechanisms and thus allowing price expectations to be formed differently across households also leads to better model performance. Mean utility differences and mean elasticities w.r.t. price and price deviation from reference price demonstrate that models with linear utility and nonlinear utility approximated by a multilayer perceptron lead to very different implications for managerial decision making. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
12.
Kosei Fukuda 《Journal of forecasting》2009,28(4):343-357
Two related‐variables selection methods for temporal disaggregation are proposed. In the first method, the hypothesis tests for a common feature (cointegration or serial correlation) are first performed. If there is a common feature between observed aggregated series and related variables, the conventional Chow–Lin procedure is applied. In the second method, alternative Chow–Lin disaggregating models with and without related variables are first estimated and the corresponding values of the Bayesian information criterion (BIC) are stored. It is determined on the basis of the selected model whether related variables should be included in the Chow–Lin model. The efficacy of these methods is examined via simulations and empirical applications. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
Peter McAdam;Anders Warne; 《Journal of forecasting》2024,43(5):1153-1172
Euro area real-time density forecasts from three dynamic stochastic general equilibrium (DSGE) and three Bayesian vector autoregression (BVAR) models are compared with six combination methods over the sample 2001Q1–2019Q4. The terms information and observation lag are introduced to distinguish time shifts between data vintages and actuals used to compute model weights and compare the forecast, respectively. Bounds for finite mixture combinations are presented, allowing for benchmarking them given the models. Empirically, combinations with limited weight variation often improve upon the individual models for the output and the joint forecasts with inflation. This reflects overconfident BVAR forecasts before the Great Recession. For inflation, a BVAR model typically performs best. 相似文献
14.
Whitlock and Queen (1998) developed a dynamic graphical model for forecasting traffic flows at a number of sites at a busy traffic junction in Kent, UK. Some of the data collection sites at this junction have been faulty over the data collection period and so there are missing series in the multivariate problem. Here we adapt the model developed in Whitlock and Queen ( 1998 ) to accommodate these missing data. Markov chain Monte Carlo methods are used to provide forecasts of the missing series, which in turn are used to produce forecasts for some of the other series. The methods are used on part of the network and shown to be very promising. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
15.
This paper investigates robust model rankings in out‐of‐sample, short‐horizon forecasting. We provide strong evidence that rolling window averaging consistently produces robust model rankings while improving the forecasting performance of both individual models and model averaging. The rolling window averaging outperforms the (ex post) “optimal” window forecasts in more than 50% of the times across all rolling windows. 相似文献
16.
In recent years an impressive array of publications has appeared claiming considerable successes of neural networks in modelling financial data but sceptical practitioners and statisticians are still raising the question of whether neural networks really are ‘a major breakthrough or just a passing fad’. A major reason for this is the lack of procedures for performing tests for misspecified models, and tests of statistical significance for the various parameters that have been estimated, which makes it difficult to assess the model's significance and the possibility that any short‐term successes that are reported might be due to ‘data mining’. In this paper we describe a methodology for neural model identification which facilitates hypothesis testing at two levels: model adequacy and variable significance. The methodology includes a model selection procedure to produce consistent estimators, a variable selection procedure based on statistical significance and a model adequacy procedure based on residuals analysis. We propose a novel, computationally efficient scheme for estimating sampling variability of arbitrarily complex statistics for neural models and apply it to variable selection. The approach is based on sampling from the asymptotic distribution of the neural model's parameters (‘parametric sampling’). Controlled simulations are used for the analysis and evaluation of our model identification methodology. A case study in tactical asset allocation is used to demonstrate how the methodology can be applied to real‐life problems in a way analogous to stepwise forward regression analysis. Neural models are contrasted to multiple linear regression. The results indicate the presence of non‐linear relationships in modelling the equity premium. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
17.
In this paper, we examine the use of non‐parametric Neural Network Regression (NNR) and Recurrent Neural Network (RNN) regression models for forecasting and trading currency volatility, with an application to the GBP/USD and USD/JPY exchange rates. Both the results of the NNR and RNN models are benchmarked against the simpler GARCH alternative and implied volatility. Two simple model combinations are also analysed. The intuitively appealing idea of developing a nonlinear nonparametric approach to forecast FX volatility, identify mispriced options and subsequently develop a trading strategy based upon this process is implemented for the first time on a comprehensive basis. Using daily data from December 1993 through April 1999, we develop alternative FX volatility forecasting models. These models are then tested out‐of‐sample over the period April 1999–May 2000, not only in terms of forecasting accuracy, but also in terms of trading efficiency: in order to do so, we apply a realistic volatility trading strategy using FX option straddles once mispriced options have been identified. Allowing for transaction costs, most trading strategies retained produce positive returns. RNN models appear as the best single modelling approach yet, somewhat surprisingly, model combination which has the best overall performance in terms of forecasting accuracy, fails to improve the RNN‐based volatility trading results. Another conclusion from our results is that, for the period and currencies considered, the currency option market was inefficient and/or the pricing formulae applied by market participants were inadequate. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
18.
Auditors must assess their clients' ability to function as a going concern for at least the year following the financial statement date. The audit profession has been severely criticized for failure to ‘blow the whistle’ in numerous highly visible bankruptcies that occurred shortly after unmodified audit opinions were issued. Financial distress indicators examined in this study are one mechanism for making such assessments. This study measures and compares the predictive accuracy of an easily implemented two‐variable bankruptcy model originally developed using recursive partitioning on an equally proportioned data set of 202 firms. In this study, we test the predictive accuracy of this model, as well as previously developed logit and neural network models, using a realistically proportioned set of 14,212 firms' financial data covering the period 1981–1990. The previously developed recursive partitioning model had an overall accuracy for all firms ranging from 95 to 97% which outperformed both the logit model at 93 to 94% and the neural network model at 86 to 91%. The recursive partitioning model predicted the bankrupt firms with 33–58% accuracy. A sensitivity analysis of recursive partitioning cutting points indicated that a newly specified model could achieve an all firm and a bankrupt firm predictive accuracy of approximately 85%. Auditors will be interested in the Type I and Type II error tradeoffs revealed in a detailed sensitivity table for this easily implemented model. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
19.
Elena Olmedo 《Journal of forecasting》2016,35(3):217-223
In this paper we confirm the existence of nonlinear dynamics in a time series of airport arrivals. We subsequently propose alternative non‐parametric forecasting techniques to be used in a travel forecasting problem, emphasizing the difference between the reconstruction and learning approach. We compare the results achieved in point prediction versus sign prediction. The reconstruction approach offers better results in sign prediction and the learning approach in point prediction. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
20.
Kosei Fukuda 《Journal of forecasting》2005,24(4):255-267
It often occurs that no model may be exactly right, and that different portions of the data may favour different models. The purpose of this paper is to propose a new procedure for the detection of regime switches between stationary and nonstationary processes in economic time series and to show its usefulness in economic forecasting. In the proposed procedure, time series observations are divided into several segments, and a stationary or nonstationary autoregressive model is fitted to each segment. The goodness of fit of the global model composed of these local models is evaluated using the corresponding information criterion, and the division which minimizes the information criterion defines the best model. Simulation and forecasting results show the efficacy and limitations of the proposed procedure. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献