首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以小麦秸秆为原料热解制备生物炭,分别用FeSO_4/FeCl_3和FeCl_3对生物炭进行表面改性。表征结果显示,改性生物炭表面存在磁性颗粒和Fe—O基团,负载铁后生物炭的比表面积和总孔体积显著增大。吸附实验结果表明,改性后生物炭吸附Cr(Ⅵ)的吸附性能优于未改性生物炭,且以FeSO_4/FeCl_3改性的生物炭吸附性能更佳,在Cr(Ⅵ)溶液初始pH为2、初始浓度为100 mg·L~(-1)、温度为30℃、振荡速率为150 r·min~(-1)、生物炭投加量为4 g·L~(-1)、吸附时间为48 h的条件下,FeSO_4/FeCl_3改性的生物炭对Cr(Ⅵ)的去除率达93.9%;负载铁生物炭对Cr(Ⅵ)的吸附符合拟二级动力学模型和Langmuir等温吸附模型。  相似文献   

2.
本文以椰壳为原料制备椰壳生物炭,并用于甲基橙(MO)的吸附。通过扫描电镜 (SEM)、红外光谱(FT-IR)、氮吸附(BET)、元素分析(EA)等对椰壳生物炭物化性质进行了表征,分析了活化剂种类、浸渍比、热解温度和热解时间等因素对 MO 吸附效果的影响。结果表明活化剂为KOH,浸渍比为 3:1,热解温度是700 ℃,热解时间270 min,制备的生物炭K3CBc700270比表面积为126 1.93 m2?g-1,平均孔径1.10 nm,具有优异的甲基橙去除效果,当甲基橙浓度为100 mg?L-1,添加量为5 mg,吸附时间270 min,MO去除达到95.31 %。研究吸附机制发现吸附等温线数据拟合符合Langmuir 模型,吸附动力学数据拟合符合拟二级动力学模型,说明吸附以化学单层吸附为主,物理吸附为辅。结果证明椰壳生物炭K3CBc700270具有开发为去除水染料污染物吸附剂的潜力。  相似文献   

3.
采用批次实验方法研究了热解温度和生物质材料来源对制备的生物质炭吸附水体中硝氮吸附特征的影响。结果表明,准一级动力学方程对生物质炭吸附硝氮的动力学过程的拟合效果最好;生物质炭吸附硝氮的热力学过程符合线性分配方程。生物质炭对硝氮的吸附机制以物理吸附为主,多种吸附机制为辅,且各生物质炭对硝氮均具有很好的吸附能力;虽然热解温度和材料来源对吸附速率和吸附能力具有一定的影响,但是并不改变其吸附机制。热解温度越高,生物质炭对硝氮的吸附越易发生而且吸附量越大;不同原材料制备的生物质炭中,玉米秸秆炭对硝氮的吸附量最大,其次为树枝炭。  相似文献   

4.
磷是动植物必不可少的营养物质.然而,地表水中过量的磷会导致水生植物和藻类的快速生长.本研究通过氯化镁对玉米芯残渣进行改性,在无氧条件下高温烧制并与碱改性凹凸棒混合,制备了一种碱改性生物炭-凹凸棒土复合物(MgO-CB-AMAP).该碱改性生物炭具有高比表面积,达396.2 m~2/g,明显高于直接煅烧制备的生物碳(132.7 m~2/g).进一步,评价了MgO-CB-AMAP复合物对水中磷的吸附性能.结果表明:当水中磷浓度5 mg/L、玉米芯及凹凸棒的比例为1∶3、用量为2 g/L时,6 h后磷去除率达91%,吸附量为9.7 mg/g,均高于生物炭(3.6 mg/g)和碱改性凹凸棒(6.1 mg/g).最后,对MgO-CB-AMAP在模拟含磷污染水体中磷的吸附过程进行了动力学研究,该吸附过程符合准二级动力学模型.研究结果表明这种碱改性生物炭-凹凸棒土复合物在磷污染控制中有很好的应用前景.  相似文献   

5.
采用农业废弃物玉米芯作为原材料,通过生物碳化(HTC)的方法在不同温度下制备低成本、高性能吸附剂用生物炭.该生物炭具有介孔结构,表面含有丰富的含氧官能团,如—OH,C==O,C—O等,其种类及密度受水热温度的影响.以亚甲基蓝(MB)作为模型吸附剂,进一步研究了生物炭的吸附性能.吸附动力学研究表明符合拟二级动力学模型吸附行为,且225 ℃水热条件下得到的生物炭具有最大吸附量(41.37 mg/g)和最高吸附速率.等温吸附平衡数据与Langmuir等温模型吻合较好,表明生物炭对MB的吸附是单层吸附;生物炭表面含氧官能团与MB分子相互作用有助于吸附过程.  相似文献   

6.
以人粪为原料制备生物炭,以得率、碘吸附值和亚甲基蓝吸附值为评价指标,考察制备过程中升温速率、热解温度和热解时间等因素对自制人粪生物碳吸附性能的影响。利用比表面积及孔径分析仪分析人粪生物碳的孔径分布和孔容以及比表面积。利用扫描电镜和XRD对生物碳的表面形貌和晶体结构进行分析。采用正交实验,确定最佳制备工艺条件。研究结果表明:在最优制备工艺条件下(升温速率15℃/min,热解温度600℃,热解时间70 min),人粪生物炭平均得率为49%,碘吸附平均值为682 mg/g,亚甲基蓝吸附平均值为93 mL/g。在最优条件下制得的人粪生物碳比表面积为690.8 m~2/g,总孔容积为0.329 cm~3/g,中孔容积和微孔容积分别为0.235 cm~3/g和0.087 cm~3/g,平均孔径2.832 nm。生物碳表面比较粗糙,呈现凹凸不平、蜂窝状结构,并且表面存在发达的、孔径不一的孔结构,孔的形状多样。自制人粪生物碳中一部分碳原子形成了比较稳定的片层石墨结构,有利于应用中生物炭性质保持相对稳定。  相似文献   

7.
采用玉米芯制备的生物炭对磺胺甲恶唑(SMZ)的吸附能力进行了研究.玉米芯经过预处理、活化、裂解及功能化处理,成功制备了功能化生物炭材料.采用SEM、FTIR、XRD技术对生物炭的形貌和理化性质进行了表征.吸附实验表明,利用磷酸活化、硝酸功能化的生物炭(PNBC)吸附效果最佳,其最大吸附量达162.08 mg/g,动力学...  相似文献   

8.
以玉米秸秆为原料,利用氧氯化锆浸渍-限氧热解法制备一种新型的载锆生物炭阴离子吸附剂.采用场发射扫描电镜(FE-SEM)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和比表面积测定(BET-N2)等手段,对空白生物炭(BC)及载锆生物炭(Zr-BC)的形貌、组成及结构进行表征.结果表明:热解后的生物炭表面形貌粗糙,均发育有裂纹和蜂窝状大孔结构;与BC相比,Zr-BC比表面积和平均孔径都有降低,且表面元素含C量大幅降低,含O量显著增加,Zr质量分数达到15.7%;Zr-BC表面主要官能团有羟基(-OH)、羧基(-COOH)、锆羟基氧化物等,构成吸附性能的结构基础;当pH值为2时,Zr-BC对磷酸盐吸附效果最显著,符合Freundlich等温吸附线模型.通过多种阴离子混合吸附测试发现,Zr-BC对水中磷酸盐有较高吸附量,且选择性较高.  相似文献   

9.
金属活性位点的浸出和聚集是传统金属负载型催化剂常见的问题.基于此,利用双氰胺与酞菁复合前驱体一步法热解合成了一系列不含金属的氮掺杂层状碳催化剂.通过透射电镜、X-射线粉末衍射和物理吸附仪等多种袁征手段证明合成的二维层状碳基催化剂具有比表面积高(246 m2/g~371 m2/g),氮含量丰富(质量分数约11.0%~33...  相似文献   

10.
利用共沉淀法合成了碳纳米管复合改性的水滑石(MgAl-LDH/CNTs),并作为吸附剂去除水体中的四环素,研究其对四环素的吸附性能和机制。实验结果表明,碳纳米管成功复合到镁铝水滑石表面上。MgAl-LDH/CNTs在近中性条件下对四环素的吸附性能最强,吸附过程更符合准二级动力学模型和Langmuir模型,拟合得到的最大吸附量为44.163mg/g。MgAl-LDH/CNTs对四环素的吸附机理可能存在静电作用、氢键和π-π相互作用。研究结果可为水体中四环素的去除提供新方法。  相似文献   

11.
为了探讨生物质种类对制备热解生物炭吸附去除污染物性能的影响,以水曲柳、花生壳及牛粪为生物质原料,在400℃下热解4 h制备生物炭(FM-BC、PS-BC和CM-BC).对生物炭的产率、灰分、元素组成和表面官能团的变化进行了分析.结果表明,牛粪生物炭的产率最高(57.9%)、灰分最高(66.9%),同时碱性基团和酸性基团数量之比最大.用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)及场发射扫描电子显微镜(FESEM)进行了表征,结果表明,除牛粪生物炭外,其他两种生物炭生成了完全无定形的碳;观察生物炭的形貌,都呈现出多孔炭架结构,孔隙结构非常丰富,并且PS-BC的孔道轮廓更清晰完整.以Pb~(2+)为模型污染物,通过序批式吸附实验比较了不同生物炭的吸附性能,研究了其吸附热力学和动力学行为.在25℃及p H=5.5条件下,FM-BC、PS-BC和CM-BC对Pb~(2+)的饱和吸附量分别为11.99、31.9和197.99 mg·g~(-1),吸附能力由大到小的顺序为CMBCPS-BCFM-BC.吸附速率常数分别为0.001 37 g·mg-1·min~(-1),0.000 78 g·mg~(-1)·min~(-1)和0.068 g·mg~(-1)·min~(-1),吸附速率由大到小的顺序为CM-BCFM-BCPS-BC.研究证明,生物质的种类影响着生物炭对Pb~(2+)的吸附性能.  相似文献   

12.
以花生壳为生物质原料,Pb~(2+)为模型污染物,在水和KMnO_4溶液中分别制备出花生壳水热炭(PSC)和锰改性花生壳水热炭(5%PSC,10%PSC和15%PSC),对水热炭的灰分、比表面积和元素组成进行了分析,用X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)进行了表征,并通过吸附率-pH曲线比较了锰改性对水热炭吸附性能的影响,研究了吸附热力学和动力学行为.结果表明,KMnO_4改性提高了花生壳水热炭的灰分含量,在水热炭中形成分散性的MnCO_3,使其比表面积、孔体积和孔径减小.锰改性提高了花生壳生物炭的吸附性能,按水热炭对Pb~(2+)的吸附率大小排列顺序为15%PSC10%PSC5%PSCPSC.在25℃及pH5.5条件下,PSC和5%PSC对Pb~(2+)的吸附过程遵循Freundlich吸附等温方程,而10%PSC和15%PSC对Pb~(2+)的吸附过程符合Langmuir等温吸附方程.10%PSC和15%PSC对Pb~(2+)的饱和吸附量分别为56.53,75.47mg/g.Pb~(2+)在锰改性和未改性生物炭上的吸附遵循准二级动力学方程,吸附率由大到小的顺序为15%PSC10%PSC5%PSCPSC.  相似文献   

13.
【目的】通过对不同热解温度下杨树树叶、树枝、树皮生物质炭和秸秆生物质炭的理化特性及结构进行分析,筛选出更适用于林地土壤改良的农林废弃物种类和热解温度。【方法】以杨树不同组分树叶、树枝、树皮和秸秆等4种农林废弃物为原料,分别在300、500和700 ℃温度下制备生物质炭,测定其产率、pH、全碳、全氮含量、阳离子交换量(CEC)、比表面积和表面官能团等指标。【结果】随着热解温度的升高,4种原料生物质炭的产率逐渐降低,灰分含量和pH升高。同一热解温度下,树枝和树皮生物质炭的全碳含量高于树叶和秸秆生物质炭的,而全氮(TN)、全磷(TP)和全钾(TK)含量均低于树叶和秸秆生物质炭的。4种生物质炭水溶性盐基离子含量和交换性盐基离子含量均随着热解温度的升高而增加,树叶生物质炭的阳离子交换量总体高于其他3种原料的生物炭。树叶和树皮生物质炭的比表面积和总孔容积总体大于树枝和秸秆生物质炭,树皮和树叶生物质炭在700 ℃时比表面积分别高达597.02和121.01 m2/g。4种原料生物质炭的表面官能团种类基本相同,以芳香骨架为主,表面官能团数量均随着热解温度的升高而减少,芳香化程度增强。【结论】在不同热解温度和原料制备的生物质炭中,树叶和秸秆生物质炭的灰分、pH、N、K和盐基离子含量较高,比较适用于改良酸性土壤,增加土壤养分;而杨树树枝和树皮生物质炭含碳量较高,则适用于土壤固碳,提高土壤有机质含量。其中,500 ℃热解的杨树树叶生物质炭综合性能最好,氮、磷、钾养分耗失最少,阳离子交换能力较强,比表面积大,更适用于土壤改良。  相似文献   

14.
水稻秸秆生物炭对诺氟沙星的吸附性能研究   总被引:1,自引:0,他引:1  
以水稻秸秆为原料,在300℃、400℃、500℃和600℃4个温度下制备生物炭,分别利用Boehm滴定、比表面积等方法对其进行表征,并研究了4种生物炭对诺氟沙星的吸附特征。结果表明,随着热解温度的升高,生物炭产率下降,表面碱性官能团数量和比表面积逐渐增加。4种生物炭对诺氟沙星的吸附率为B600B500B400B300,在投加量为0.4 g时,B600和B500的吸附率几乎接近100%,远高于B400和B300。对4种生物炭对诺氟沙星的吸附等温线进行拟合,B600符合Langmuir方程,其余3种符合Freundlich方程。4种生物炭对诺氟沙星的吸附反应过程满足准二级动力学方程,相关系数R20.9887,其中B300对诺氟沙星的吸附速率最大。  相似文献   

15.
以玉米秸秆为生物质材料, 分别在250,350,450 ℃碳化温度下制备3种玉米秸秆生物炭(分别命名为B250,B350,B450), 利用红外光谱和扫描电镜对其结构和表面形貌进行表征, 并通过实验室模拟考察其对氮磷的吸附性能. 结果表明: 随着碳化温度的升高, 玉米秸秆生物炭表面的微孔形变程度加剧, 粗糙程度增大, 芳构程度提高, 稳定性增强; B250玉米秸秆生物炭稳定性相对较弱, 在吸附过程中存在较强的磷释放作用, 对磷呈现显著负吸附; B350和B450对磷的吸附动力学过程均可用Lagergren准二级动力学模型描述; 3种玉米秸秆生物炭对磷的吸附热力学过程均可用Langmuir方程描述, 对磷的饱和吸附量为B450>B350>B250; 玉米秸秆生物炭对氮的吸附动力学过程符合Lagergren准二级动力学模型, 吸附热力学过程符合Langmuir方程, 对氮的吸附速率为B450>B350>B250, 饱和吸附量为B450>B350>B250.  相似文献   

16.
生物质快速热裂解炭的分析及活化研究   总被引:1,自引:0,他引:1  
采用化学(KOH)方法对两种具有代表性的生物质原料(花梨木和稻壳)的快速热裂解固体产物-热解炭进行了活化,并采用氮吸附、X射线衍射(XRD)、傅里叶红外光谱分析(FTIR)和扫描电镜(SEM)技术测试了热解炭的结构特性、表面特性以及物理化学性质.结果表明,这两种热解炭经过活化后可以获得许多优良的性质,固定碳含量增加,灰分含量减少.同时,活化后BET比表面积迅速增大,超过1100m2/g,而且热解炭的石墨化程度都有所加深.热解炭通过活化过程可以实现其高品质利用,有利于生物质热裂解技术的工业化发展.  相似文献   

17.
资源化利用椰壳炭作为吸附剂去除水中四环素,对其进行了详细表征,研究了pH值、椰壳炭投加量、四环素初始质量浓度对吸附性能的影响,并探究了吸附机理.结果表明,椰壳炭以微孔和介孔为主,比表面积达478.45 m2·g-1.初始质量浓度为50 mg·L-1的四环素废水,投加500 mg·L-1椰壳炭,处理15 min,去除率可达98%.椰壳炭对四环素的吸附符合Langmuir等温吸附模型,以单分子层表面吸附为主,吸附过程符合准一级吸附动力学模型,主要为物理吸附.  相似文献   

18.
生物炭对土壤重金属吸附机理研究进展   总被引:1,自引:0,他引:1  
生物炭是生物质在缺氧或是无氧条件下低温热解而成的高富碳产物,其精致的孔隙结构与较大的比表面积,丰富的表面官能团,使其对重金属离子具有较强吸附能力.近年来,生物炭修复土壤重金属污染已成为研究热点.文章对生物炭的性质、吸附重金属的作用机理、影响生物炭吸附的各个因素以及修复土壤后对重金属生物有效性等方面进行综述,最后提出生物炭未来在修复土壤重金属污染方面的研究方向.  相似文献   

19.
为了能以更有效更经济的方法去除废水中的Ni(Ⅱ),选用成本低廉的大豆秸秆制备生物炭作为吸附剂,研究了炭化温度、溶液pH、吸附剂投加量、溶液温度、Cd(Ⅱ)质量浓度对吸附效果的影响,得到了最佳的吸附条件,开拓了去除重金属镍的新方法,同时研究了生物炭对Ni(Ⅱ)的吸附动力学和吸附等温线。实验表明,大豆秸秆生物炭对Ni(Ⅱ)有较好的吸附性能,Ni(Ⅱ)质量浓度为20mg/L,炭化温度为500℃,pH为7,投加量为0.2g,室温为25℃,Cd(Ⅱ)质量浓度为0为最佳吸附条件。吸附反应符合准二级动力学方程。吸附等温线符合Langmuir模型,25℃时饱和吸附量为14.38mg/L。扫描电镜分析显示,炭化使得秸秆孔道结构增多,表面粗糙程度加剧,比表面积增大,从而提高了吸附性能。  相似文献   

20.
采集生物质材料制备生物炭,对其性质进行表征,测定了其对菲、芘的吸附,考察了其性质与吸附行为的关系。3种生物炭的吸附能力遵循草炭松针炭玉米芯炭的顺序,相较于极性作用,表面积和孔在吸附中占主导作用。小粒径玉米芯炭的吸附能力和非线性程度大于大粒径,深度粉碎暴露出来一些内部原不可及的孔,增加了点位的异质性,提高了其吸附能力。生物炭对菲的吸附能力大于芘,是由于较小的菲分子更易到达吸附点位的缘故。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号