首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although there is a need for antibacterial agents that act only on Gram-negative bacteria, there are at present few such compounds. The 2-deoxy analogue of beta-KDO (3-deoxy-beta-D-manno-2-octulopyranosonic acid) is a potent inhibitor of a key enzyme (CMP-KDO synthetase) in lipopolysaccharide biosynthesis of Gram-negative bacteria, but it fails to penetrate intact bacteria. Coupling an L-L-dipeptide to the 8-amino-2,8-dideoxy analogue of beta-KDO enabled it to be recognized and actively accumulated by certain peptide permeases of the cytoplasmic membrane. The dipeptide was hydrolysed in the cell and the inhibitor released. Subsequent inhibition of CMP-KDO synthetase led to the accumulation of large amounts of lipid A precursor and bacterial death. These compounds represent a new class of synthetic antimicrobials with a novel mechanism of action and considerable potential as chemotherapeutic agents.  相似文献   

2.
新型纳米无机抗菌剂TiO2和ZnO的广谱抗菌性研究   总被引:1,自引:0,他引:1  
 选择了革兰氏阴性细菌、革兰氏阳性细菌、芽孢杆菌、酵母菌和霉菌的代表菌株,采用三角瓶振荡法及纸片扩散法,对2种新型纳米无机抗菌剂:纳米TiO2和纳米ZnO进行了广谱抗菌性研究,并通过与日本的纳米无机抗菌剂及有机抗菌剂进行比较,结果表明2种新型纳米抗菌剂不仅对所有代表菌株表现出很好的广谱抗菌性能,而且其抑菌能力强于日本无机抗菌剂和有机抗菌剂;在此基础上对相关抗菌剂的抗菌机理进行了分析讨论.  相似文献   

3.
Cysteine proteinases are important not only in the intracellular catabolism of peptides and proteins and in the processing of prohormones and proenzymes, but also in the penetration of normal human tissue by malignant cells and possibly microorganisms, including viruses. Cystatin C is a human cysteine proteinase inhibitor present in extracellular fluids. We have synthesized peptide derivatives mimicking the proposed proteinase-binding centre of cystatin C and find that they irreversibly inhibit cysteine proteinases. Several bacteria produce proteinases, so we tested a tripeptide derivative (Z-LVG-CHN2) for in vitro anti-bacterial activity against a large number of bacterial strains belonging to thirteen different species. It was found to inhibit specifically the growth of all strains of group A streptococci. The susceptibility of these human pathogens to the peptide was compared with that to well-established anti-streptococcal antibiotics such as tetracycline and bacitracin. Moreover, the peptide was active in vivo against group A streptococci: mice injected with lethal doses of these bacteria were cured by a single injection of Z-LVG-CHN2. The cysteine proteinase produced by group A streptococci was isolated and found to be inhibited by Z-LVG-CHN2; moreover, excess proteinase relieved the growth inhibition caused by the peptide derivative, suggesting that the antibacterial activity of Z-LVG-CHN2 is due to inhibition of this cysteine proteinase. This strategy of blocking proteinases with peptide derivatives that mimic naturally occurring inhibitors could be useful in the construction of new agents against other microorganisms, including viruses.  相似文献   

4.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

5.
Messenger-RNA-directed protein synthesis is accomplished by the ribosome. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNA(fMet)). The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF); it removes this formyl group as polypeptides emerge from the ribosomal tunnel and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal alpha-helical extension. Studies focusing on PDF as a target for antibacterial drugs have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 A resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.  相似文献   

6.
A Olsén  A Jonsson  S Normark 《Nature》1989,338(6217):652-655
Gram-negative bacteria are known to produce two types of surface organelles: flagella, which are required for motility and chemotaxis, and pili (fimbriae), which play a part in the interaction of bacteria with other bacteria and with eukaryotic host cells. Here we report a third class of E. coli surface organelles for which we propose the name curli. Curli are coiled surface structures composed of a single type of subunit, the curlin, which differs from all known pilin proteins and is synthesized in the absence of a cleavable signal peptide. Although the gene encoding this structural subunit, crl, is present and transcribed in most natural isolates of E. coli, only certain strains are able to assemble the subunit protein into curli. This assembly process occurs preferentially at growth temperatures below 37 degrees C. The ability of curli to mediate binding to fibronectin may be a virulence-associated property for wound colonization and for the colonization of fibronectin-coated surfaces.  相似文献   

7.
Beta-Lactamases (EC 3.5.2.6, 'penicillinases') are a family of enzymes that protect bacteria against the lethal effects of cell-wall synthesis of penicillins, cephalosporins and related antibiotic agents, by hydrolysing the beta-lactam antibiotics to biologically inactive compounds. Their production can, therefore, greatly contribute to the clinical problem of antibiotic resistance. Three classes of beta-lactamases--A, B and C--have been identified on the basis of their amino-acid sequence; class B beta-lactamases are metalloenzymes, and are clearly distinct from members of class A and C beta-lactamases, which both contain an active-site serine residue involved in the formation of an acyl enzyme with beta-lactam substrates during catalysis. It has been predicted that class C beta-lactamases share common structural features with D,D-carboxypeptidases and class A beta-lactamases, and further, suggested that class A and class C beta-lactamases have the same evolutionary origin as other beta-lactam target enzymes. We report here the refined three-dimensional structure of the class C beta-lactamase from Citrobacter freundii at 2.0-A resolution and confirm the predicted structural similarity. The refined structure of the acyl-enzyme formed with the monobactam inhibitor aztreonam at 2.5-A resolution defines the enzyme's active site and, along with molecular modelling, indicates a mechanism for beta-lactam hydrolysis. This leads to the hypothesis that Tyr 150 functions as a general base during catalysis.  相似文献   

8.
Pathogenic bacteria often use effector molecules to increase virulence. In most cases, the mode of action of effectors remains unknown. Strains of Pseudomonas syringae pv. syringae (Pss) secrete syringolin A (SylA), a product of a mixed non-ribosomal peptide/polyketide synthetase, in planta. Here we identify SylA as a virulence factor because a SylA-negative mutant in Pss strain B728a obtained by gene disruption was markedly less virulent on its host, Phaseolus vulgaris (bean). We show that SylA irreversibly inhibits all three catalytic activities of eukaryotic proteasomes, thus adding proteasome inhibition to the repertoire of modes of action of virulence factors. The crystal structure of the yeast proteasome in complex with SylA revealed a novel mechanism of covalent binding to the catalytic subunits. Thus, SylA defines a new class of proteasome inhibitors that includes glidobactin A (GlbA), a structurally related compound from an unknown species of the order Burkholderiales, for which we demonstrate a similar proteasome inhibition mechanism. As proteasome inhibitors are a promising class of anti-tumour agents, the discovery of a novel family of inhibitory natural products, which we refer to as syrbactins, may also have implications for the development of anti-cancer drugs. Homologues of SylA and GlbA synthetase genes are found in some other pathogenic bacteria, including the human pathogen Burkholderia pseudomallei, the causative agent of melioidosis. It is thus possible that these bacteria are capable of producing proteasome inhibitors of the syrbactin class.  相似文献   

9.
Tumbula DL  Becker HD  Chang WZ  Söll D 《Nature》2000,407(6800):106-110
The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.  相似文献   

10.
Antibacterial agents based on the cyclic D,L-alpha-peptide architecture   总被引:5,自引:0,他引:5  
The rapid emergence of bacterial infections that are resistant to many drugs underscores the need for new therapeutic agents. Here we report that six- and eight-residue cyclic d,l-alpha-peptides act preferentially on Gram-positive and/or Gram-negative bacterial membranes compared to mammalian cells, increase membrane permeability, collapse transmembrane ion potentials, and cause rapid cell death. The effectiveness of this class of materials as selective antibacterial agents is highlighted by the high efficacy observed against lethal methicillin-resistant Staphylococcus aureus infections in mice. Cyclic d,l-alpha-peptides are proteolytically stable, easy to synthesize, and can be derived from a potentially vast membrane-active sequence space. The unique abiotic structure of the cyclic peptides and their quick bactericidal action may also contribute to limit temporal acquirement of drug resistant bacteria. The low molecular weight d,l-alpha-peptides offer an attractive complement to the current arsenal of naturally derived antibiotics, and hold considerable potential in combating a variety of existing and emerging infectious diseases.  相似文献   

11.
家蚕抗菌肽的一些性质及抗肿瘤活性   总被引:20,自引:1,他引:20  
由E.coliK12D31诱导的家蚕血淋巴中提取的抗菌肽对热稳定,高温高压处理30分钟仍保持原有活性。抗菌肽对木瓜蛋白酶不敏感,对蛋白酶E较敏感,而对蛋白酶K和胰蛋白酶则极为敏感,抗菌肽对PH的变化较为稳定,在PH2.2-8.0的范围内活性基本不变,肿瘤模型实验观察到免疫血淋巴对宫颈瘤有明显的抑瘤作用。抗菌肽与K562人髓样白血病细胞混合培育一定时间后,电镜观察可看到细胞膜和细胞器发生明显变化,最  相似文献   

12.
利用原位修饰法合成了表面氨基化纳米银,优化了纳米银的制备条件.通过紫外-可见光谱、傅里叶变换-红外光谱、X射线衍射、Zeta电势及透射电子显微镜等对其进行了分析和表征.对纳米银的抗菌性能进行了研究.结果表明:氨基化纳米银带有正电荷,能通过静电吸引作用结合表面带负电荷的细菌,使抗菌活性显著提高;氨基化的纳米银可有效抑制革兰氏阴性细菌和阳性细菌的生长;该材料可被应用于医学器件和细菌控制领域.  相似文献   

13.
S Kvist  U Hamann 《Nature》1990,348(6300):446-448
Most cytotoxic T lymphocytes (CTL) recognize epitopes of foreign viral proteins in association with class I major histocompatibility complex (MHC) molecules. Viral proteins synthesized in the cytoplasm require intracellular fragmentation and exposure to the class I antigens for the development of CTL responses. Although indirect evidence for binding of peptides to class I antigens has accumulated, direct binding has only been shown recently. The formation of complexes between peptide and class I antigen may occur in the endoplasmic reticulum (ER) and peptides have been shown to induce assembly of the class I complex. We have translated the messenger RNAs encoding HLA-B27 (subtype 2705) and beta 2-microglobulin in a rabbit reticulocyte lysate supplemented with human microsomal membranes (to mimic ER membranes), in the absence and presence of a peptide derived from the nucleoprotein (residues 384-394) of influenza A virus. This peptide induces CTL activity against target cells expressing the HLA-B27 antigen. Here we report direct evidence that the nucleoprotein peptide promotes assembly of the HLA-B27 heavy chain and beta 2-microglobulin, and that this can occur in the ER immediately after synthesis of the two proteins.  相似文献   

14.
Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and D-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.  相似文献   

15.
Starch is easy to breed bacteria,which affects its performance and application in medical dressings.In this research,antibacterial starch was prepared by physical blending method with glycidyl trimethyl ammonium chloride(GTA)and potassium sorbate as antibacterial agents.The antibacterial activities of GTA,potassium sorbate,GTA-starch and potassium sorbate-starch were investigated with the purpose of understanding the growth of bacteria in starch system.Results showed that GTA had good antibacterial activity,and the bacteriostasis rate of 0.05 g/mL GTA against Staphylococcus aureus(S.aureus)was 96.55%.The antibacterial properties of starch increased with an increase of mass fraction of potassium sorbate and then decreased with the continuously increasing of mass fraction of GTA.GTA-starch with30%GTA showed the best antibacterial activities,the bacteriostasis rate of Escherichia coli(E.coli)and S.aureus were 26.48%and20.26%,respectively;50%potassium sorbate in potassium sorbatestarch showed the best antibacterial activities,the bacteriostasis rate of E.coli and S.aureus were 67.68%and 74.75%,respectively.  相似文献   

16.
H Bodmer  G Ogg  F Gotch  A McMichael 《Nature》1989,342(6248):443-446
Most cytotoxic T lymphocytes (CTL) not only recognize epitopes of viral or other foreign proteins in association with class I major histocompatibility complex (MHC) molecules, but also recognize target cells sensitized with short synthetic peptides representing the epitopes. There is increasing evidence that these synthetic peptides associate with the class I molecule both at the cell surface and intracellularly. We have now investigated the effect of a monoclonal antibody specific for HLA-A2 and HLA-B17 (B57/58) molecules (antibody MA2.1)3 on the sensitization of target cells with peptide for lysis by HLA-A2-restricted CTL. Previously, anti-HLA class I monoclonal antibodies have been shown to inhibit the recognition of target cells, infected with influenza A virus, by virus-specific CTL. We find, however, that target cells treated with MA2.1 antibody can be sensitized with peptide for CTL lysis much more rapidly than untreated cells, or at greater than 100-fold lower peptide concentration than that required for sensitization of untreated cells. This implies that the antibody, which is believed to bind to one side of the peptide-binding groove, directly affects the binding of peptide to the HLA-A2 molecule at the cell surface.  相似文献   

17.
0 IntroductionAlnattie mdicfrroobmiala p wriodteei nvsar iheatdy boefe linv ifnogun odr gaanndis ismos--Bacteria[1], fungi[2 ,3], plants[4]and ani mals[5].Those proteins displayed a wide spectrumof anti mi-crobial activity against different species of viruses ,bacteria andfungi .Over the past few years ,several anti microbialpeptides and proteins were foundinfungus ,such asAFP fromAspergillus giganteus[6], Anafp fromAspergillus niger[7], Zygocin fromthe yeastZy-gosaccharomyces bailii[8],an…  相似文献   

18.
【目的】研究3种松针精油对供试菌的协同抑菌效应和机制,利用松针精油天然抑菌物质抑制微生物的生长特性,为将松针精油应用于食品、化妆品等领域提供理论依据。【方法】通过微量二倍稀释法测定黑皮油松松针精油(PTEO)、樟子松松针精油(PSEO)、红松松针精油(PKEO)对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌(Bacillus subtilis)的抑菌效果,通过棋盘稀释法来测定其协同效果及最佳复配比,以最佳精油复配比研究其对3种供试菌的抑菌机理。【结果】3种精油单独作用时均表现出对3种供试菌较好的抑菌效果,部分复配后效果得到明显提高,针对不同微生物复配最佳抑菌配方为:E.coli用抑菌精油为PTEO和PSEO,浓度均为0.31 μL/mL; S. aureus用抑菌精油为PKEO和PTEO,浓度均为0.16 μL/mL; B. subtilis用抑菌精油为PKEO和PSEO,浓度分别为0.16、0.08 μL/mL。通过复配精油对3种供试菌的抑菌机理研究发现复配精油能够破坏菌体的正常形态,破坏细胞膜的渗透性,导致核酸等大分子物质的泄露,并且对细胞菌体蛋白的合成和积累有干扰作用。【结论】3种精油复配后表现出更好的抑菌作用,精油之间的协同作用可以减少到抑菌效果时精油的用量。  相似文献   

19.
With the emergence of multidrug resistant (MDR) bacteria, it is imperative to develop new intervention strategies. Current antibiotics typically target pathogen rather than host-specific biochemical pathways. Here we have developed kinase inhibitors that prevent intracellular growth of unrelated pathogens such as Salmonella typhimurium and Mycobacterium tuberculosis. An RNA interference screen of the human kinome using automated microscopy revealed several host kinases capable of inhibiting intracellular growth of S. typhimurium. The kinases identified clustered in one network around AKT1 (also known as PKB). Inhibitors of AKT1 prevent intracellular growth of various bacteria including MDR-M. tuberculosis. AKT1 is activated by the S. typhimurium effector SopB, which promotes intracellular survival by controlling actin dynamics through PAK4, and phagosome-lysosome fusion through the AS160 (also known as TBC1D4)-RAB14 pathway. AKT1 inhibitors counteract the bacterial manipulation of host signalling processes, thus controlling intracellular growth of bacteria. By using a reciprocal chemical genetics approach, we identified kinase inhibitors with antibiotic properties and their host targets, and we determined host signalling networks that are activated by intracellular bacteria for survival.  相似文献   

20.
Mah TF  Pitts B  Pellock B  Walker GC  Stewart PS  O'Toole GA 《Nature》2003,426(6964):306-310
Biofilms are surface-attached microbial communities with characteristic architecture and phenotypic and biochemical properties distinct from their free-swimming, planktonic counterparts. One of the best-known of these biofilm-specific properties is the development of antibiotic resistance that can be up to 1,000-fold greater than planktonic cells. We report a genetic determinant of this high-level resistance in the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa. We have identified a mutant of P. aeruginosa that, while still capable of forming biofilms with the characteristic P. aeruginosa architecture, does not develop high-level biofilm-specific resistance to three different classes of antibiotics. The locus identified in our screen, ndvB, is required for the synthesis of periplasmic glucans. Our discovery that these periplasmic glucans interact physically with tobramycin suggests that these glucose polymers may prevent antibiotics from reaching their sites of action by sequestering these antimicrobial agents in the periplasm. Our results indicate that biofilms themselves are not simply a diffusion barrier to these antibiotics, but rather that bacteria within these microbial communities employ distinct mechanisms to resist the action of antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号