首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
304不锈钢在闭塞区溶液中钝化膜组成和结构性能   总被引:6,自引:0,他引:6  
采用X射线光电子能谱 (XPS)和交流阻抗法 (EIS)研究了 304不锈钢在闭塞区溶液中钝化膜的组成和性能。研究结果表明:在闭塞区溶液中 304不锈钢表面钝化膜的外层主要为CrO3、CrCl3、CrOOH、Fe2O3γ-FeOOH、Fe(OH)3、CrO2-4 、Cr(OH)3、NiCl2 、FeCl2 和FeCl3;溅射 3min时膜内层主要为Cr2O3、CrO2 、FeCl2 、FeCl3以及少量的FeO。Cl-吸附在钝化膜表面,破坏了钝化膜的完整性,改变了钝化膜的结构性能。  相似文献   

2.
通过模拟压水堆-回路高温高压水化学环境,对316L奥氏体不锈钢进行了10、60和120μg/L锌浓度下的动水加锌实验,用X射线光电子能谱(XPS)对其表面氧化膜结构进行分析.结果表明,加锌能有效降低材料的腐蚀速率,在一定范围内加锌浓度(10~60μg/L)越高,腐蚀增重越小;锌对铁镍尖晶石结构中的Fe2+和Ni 2+有替换作用,形成稳定的ZnCr2O4.  相似文献   

3.
超纯铁素体不锈钢在氯化物介质中形成的钝化...   总被引:1,自引:0,他引:1  
  相似文献   

4.
316L不锈钢在含氯高温醋酸溶液中的自钝化行为   总被引:2,自引:1,他引:2  
研究了316L不锈钢在85 ℃,含0.2% KCl的60%醋酸溶液中的自钝化行为. 通过测试试样的恒电流阴极极化曲线,以及恒电流阴极极化后开路电位随时间的变化曲线,提出了316L不锈钢钝化膜的结构模型. 该模型认为316L不锈钢钝化膜由三层构成:最外层主要是由Fe的氧化物以及少量Cr的氧化物组成;第二层主要是Cr的氧化物,含有少量Fe,Mo和Ni的氧化物;最底层主要是Mo,Ni的氧化物和少量的Fe原子. 研究发现: 316L不锈钢在实验醋酸溶液中,经10 mA阴极电流极化15 min后钝化膜生长参数γ最大,而经0.45 mA阴极电流极化30 min后钝化膜生长参数γ最小;316L不锈钢在实验醋酸溶液中,经10 mA阴极电流极化30 min后,自钝化电位最小,而经1 mA阴极电流极化15 min后,自钝化电位最大. 钝化膜结构模型能很好地解释316L不锈钢在实验醋酸溶液中的上述电化学行为.  相似文献   

5.
应用XPS和电化学测量技术研究了Ti-15Mo合金在70℃4mol/L HCl溶液中,900mV,200mV和0mV恒电位阳极极化条件下形成的钝化膜。结果表明,Ti-15Mo合金在70℃4mol/L HCl溶液中钝化膜很稳定。  相似文献   

6.
采用电化学测试、SEM分析等方法,研究了316 L不锈钢在质量分数为30%的浓硝酸溶液及98%硫酸+20 g/L硝酸钾混合液两种钝化剂预处理后的特性,以及在ClO2漂液中的电化学抗腐蚀性能。结果表明,316 L不锈钢在25℃、30%硝酸介质中处理30 min时抗点蚀能力ΔE可达到773 mV,钝化效果较好。EIS图谱表明:316 L不锈钢在ClO2漂液中具有双容抗弧特征,钝化处理容抗弧半径较未钝化的增大,处理后的316 L不锈钢在60℃出现了Warburg阻抗;钝化膜的外层电阻和内层电阻均比未钝化的大。经钝化处理后的316 L不锈钢在ClO2漂液中的受腐蚀速率较未钝化的降低近一半,与钛材相比耐蚀性较差,但能在一定条件下起到减缓腐蚀的作用。  相似文献   

7.
316L不锈钢在醋酸溶液中的钝化膜电化学性质   总被引:2,自引:1,他引:2  
通过电化学阻抗方法测量316L不锈钢在25~85 ℃的醋酸溶液中的EIS曲线和Mott-Schottky曲线,并测量各温度点下的循环伏安曲线,研究了钝化膜的电化学性质. 研究结果表明:在醋酸溶液中的阻抗谱表明316L不锈钢在25~85 ℃温度范围内均能形成稳定的钝化膜,随温度升高极化阻力下降而界面电容增大. 温度对于316L不锈钢钝化膜的半导体本征性质没有根本的影响:在-0.5~0.1 V电位区间内钝化膜呈p型半导体特征;在0.1~0.9 V电位区间内钝化膜呈n型半导体特征;在0.9~1.1 V电位区间内钝化膜呈p型半导体特征. 钝化膜的循环伏安曲线显示当温度低于55 ℃时,钝化膜结构比较稳定;当温度为55 ℃时,钝化膜稳定性趋向恶化;当温度超过55 ℃时,钝化膜稳定性下降.  相似文献   

8.
通过模拟压水堆一回路水环境,研究了溶液温度和溶氧量(DO)对304和316L不锈钢高温电化学腐蚀行为的影响.结果表明:随着溶液温度升高,在304和316L不锈钢表面所形成的氧化膜的保护性能降低;随着DO升高,304和316L不锈钢的自腐蚀电位升高,自腐蚀电流密度降低,钝化区缩小;304和316L不锈钢表面形成了双层氧化膜,外层氧化膜颗粒尺寸和颗粒间隙随着温度的升高而增大,随着DO增加而减小;在所用实验条件下,316L不锈钢表现出比304更优异的抗腐蚀性能.  相似文献   

9.
采用自悬浮定向流法制备金属纳米Al粉.用差示扫描量热-热重法(DSC-TG)和X射线光电子能谱(XPS)分析对其热性能进行研究.研究结果表明:在Ar气流中,新纳米铝粉的熔点为649.7℃,熔化焓为3.7kJ/mol,分别比粗晶铝的熔点(660℃)和熔化焓(10.79kJ/mol)低10.3℃和7.09 kJ/mol;在N2气流中,从20℃升温到800℃时,新纳米铝粉增重约为33%,熔点为648.8℃.在704℃开始有一个放热效应,终点为747.7℃,放热过程的焓为36.4 kJ/mol:在Ar气流中进行热分析前后的新纳米铝粉中未发现Ar元素存在;而在N2气流中进行热分析后的新纳米铝粉残余物中发现有N元素存在,样品表面Al,N和O原子的摩尔比为32.78:11.98:55.24.  相似文献   

10.
奥氏体不锈钢自发钝化膜非常薄,在一些特定的阴离子环境中容易发生腐蚀而破坏,而且不锈钢仅有金属光泽,颜色过于单调.采用再钝化实验工艺使金属表层生成一层化学转化膜,不仅能提高不锈钢的耐腐蚀性能,还能利用对光的干涉作用使金属表面呈现不同的色彩.本文利用酸性化学着色,把经过再钝化的试样和未经过再钝化的试样浸入FeCl3溶液中进行腐蚀试验,全面腐蚀和点蚀结果均表明,经过再钝化的试样的耐腐蚀性能明显高于未经过再钝化的试样.该工艺具有较好的实用价值.  相似文献   

11.
通过中心复合设计试验法设计试验,结合动电位极化曲线和电化学阻抗谱的测量以及氧化膜形貌观察和成分测量,研究了温度(30~350℃)、Cl-质量浓度(10~1000μg·L-1)和溶解氧质量浓度(0~200μg·L-1)3种因素对压水堆一回路主管道316L不锈钢电化学腐蚀性能的影响.结果表明:温度是影响316L不锈钢电化学腐蚀性能最显著的因素,温度越高,腐蚀电流密度越大,点蚀电位越低;Cl-浓度和溶解氧浓度对316L不锈钢电化学腐蚀性能的影响与温度密切相关,温度较低时(T<150℃),Cl-浓度和溶解氧浓度均对316L腐蚀电流密度几乎无影响,但点蚀电位却随Cl-浓度增加和溶解氧浓度的降低而降低;温度较高时,分别为T>130℃和T>150℃,Cl-浓度和溶解氧浓度均对316L点蚀电位几乎无影响,但腐蚀电流密度却随Cl-和溶解氧的浓度增加而显著增加,腐蚀加剧.电化学阻抗谱的测量和氧化膜形貌的观察也进一步验证了上述试验结果.  相似文献   

12.
The properties of the passive film formed on 2205 stainless steel in acetic acid at high temperature that contained chloride ions were studied by atomic absorption spectrometry (AAS), X-ray photoelectron spectroscopy (XPS), and electrochemical polarization measurements. AAS results show that molybdenum is enriched on the surface as the passive film is dissolved. This enrichment decreases the corrosion resistance because it hinders chloride adsorption and Fe ion dissolution, and acts as a local pH buffer because it consumes protons. The dissolution ratio of Fe/Cr is approximately 10 during the active dissolution of the passive film. XPS results indicate that when the potential is in the passivation region, Cr comprises about 50% of the metal cations in the near-surface region of the passive film and is the main metal constituent in this region. When the polarization potential is much greater than the transpassivation potential, the Mo content accounts for approximately 45% of the metal cations in the nearurface region; Fe and Ni have no obvious influence on the formation, dissolution, or puncture of the passive film.  相似文献   

13.
在高温水环境中,采用慢应变速率拉伸实验方法研究了温度对316 L不锈钢应力腐蚀开裂的影响规律,并通过扫描电镜(SEM)对试样断口形貌进行分析. 结果表明:在高温水环境中,温度为200~345 ℃时316 L不锈钢具有应力腐蚀开裂敏感性;材料脆性指标随温度升高而增大,应力腐蚀开裂敏感性增强,断口分析与之吻合;250 ℃是316 L不锈钢发生应力腐蚀开裂的敏感温度,断口边缘形貌呈现明显脆性断裂特征.  相似文献   

14.
Semiconductor properties of the passive films formed on 316L and 2205 stainless steel were studied by Electrochemical Impedance Spectroscopy(EIS) in the high-temperature acetic acid.The results showed that the corrosion resistance of 2205 was higher than that of 316L,and the passive films formed on 316L and 2205 stainless steel showed p-type and n-type semiconductor behavior,respectively.Destruction and self-repairing of passive films were studied by using the constant current polarization method.The result...  相似文献   

15.
采用浸泡法和电化学测试方法结合扫描电镜和能谱仪研究了高温浓硫酸中氟离子的掺入对304、2507以及904L三种不锈钢耐蚀性能的影响.结果表明:氟离子的掺入对三种不锈钢在浓硫酸中的腐蚀具有抑制作用,综合来看,904L具有更为稳定的耐蚀性能;三种不锈钢在高温浓硫酸中由于生成了热力学不稳定的硫化镍而产生了活化转钝化现象,而掺入氟离子会和硫离子发生竞争使其排挤出电极表面,氟离子与镍离子结合形成另外一种更稳定的阻挡层使不锈钢耐蚀性提高.  相似文献   

16.
Semiconductor properties of the passive films formed on 316L and 2205stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS) in the high-temperature acetic acid. The results showed that the corrosion resistance of 2205 was higher than that of 316L, and the passive films formed on 316L and 2205 stainless steel showed p-type and n-type semiconductor behavior, respectively. Destruction and self-repairing of passive films were studied by using the constant current polarization method. The results showed that for 316L, the self-repairing process would occur when the destruction was lower than the critical extent or it would not do; for 2205, the self-repairing process only happened in a short time when the destruction was in the same extent as 316L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号