首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
用电化学方法将硅钼杂多酸催化剂固定在导电聚吡咯薄膜电极上,制得了具有表面功能的硅钼杂多酸掺杂的聚吡咯薄膜修饰电极,实验发现在0.5mol/L H2SO4或0.5mol/L KCl介质中制得的硅钼杂多酸的聚吡咯薄膜修饰电极具有较好的稳定性和催化性能,用扫描电镜(SEM),SEM-能谱仪(EDS)和X射线光电子能谱(XPS)等手段对修饰电极进行了表征。  相似文献   

2.
本文在玻碳电极(GCE)表面上修饰了一层导电聚合物──聚吡咯(PPy)薄膜,用循环伏安法制备了新型的基于电流响应的碘离子掺杂的聚吡略修饰电极;研究了电极的电化学特性。此修饰电极对碘离子的响应是基于碘离子在PPy膜与电解质溶液中的掺杂平衡以及PPy膜中的碘离子在修饰电极表面的氧化还原过程;制成的电流型电极对5.0×10-2~1.0×10-5mol/L的碘离子呈良好的线性响应关系,检测下限为6.0×10-6mol/L,具有线性范围广,性能稳定的特点。  相似文献   

3.
聚吡咯掺杂溴酚蓝修饰玻碳电极的制备和电化学性质   总被引:1,自引:0,他引:1  
将玻碳电极在含吡咯、溴酚蓝(BPB)和KCl的磷酸盐缓冲溶液(PBS)中进行循环电位扫描,可在玻碳电极表面形成掺杂溴酚蓝的聚吡咯薄膜.制备的修饰电极在PBS中进行循环伏安扫描产生一对可逆性很好的氧化还原峰.电极具有良好的稳定性和电化学活性.对烟酰胺腺嘌呤二核苷酸(NADH)的氧化有催化作用.  相似文献   

4.
对导电金刚石电极的研究,过去主要集中在化学气相沉积(CVD)制备的含硼金刚石薄膜电极领域。近来有研究表明当金刚石薄膜晶粒尺寸达到纳米级时,无需掺杂硼,金刚石也表现出一定的电导率。本课题组研究发现非掺杂的纳米金刚石粉末在水溶液中也表现出了一系列的电化学活性。本文介绍了非掺杂纳米金刚石的电化学性能及其对亚硝酸根离子的催化氧化行为,另外还介绍了对纳米金刚石进行表面修饰以提高其电化学活性,增加它在电化学领域的应用范围等方面的研究进展。  相似文献   

5.
简介了聚合物薄膜修饰电极的基本类型,评述了聚合物修饰电极的制备方法和应用.  相似文献   

6.
聚合物薄膜修饰电极及其新进展   总被引:1,自引:0,他引:1  
简介了聚合物薄膜修饰电极的基本类型,讨论了电极修饰的聚合物材料、修饰层结构和在应用方面最近的进展。  相似文献   

7.
采用金属有机化学气相沉积 (MOCVD)法制备了TiO2 薄膜 ,测定了TiO2 薄膜的晶体结构 ,以 p -Si为基底电极 ,研究了TiO2 薄膜的光电化学性质 .经TiO2 修饰的p-Si电极 ,开路光电位增加近 2 0倍 ,并表现出很强的稳定性 ,是较理想的光电极材料及光电极修饰材料 .  相似文献   

8.
制备了亚甲基蓝阳离子掺杂于聚合物AQ中的化学修饰电极。研究了修饰电极的电化学行为,发现该电极在硫酸溶液中进行伏安扫描时具有良好的稳定性。该修饰电极对对多巴胺有较强的催化作用。  相似文献   

9.
MOCVD法制备TiO2薄膜的光电化学性质研究   总被引:3,自引:0,他引:3  
采用金属有机化学气相沉积法制备了TiO2薄膜,测定了TiO2薄膜的晶体结构,以p-Si为基底电极,研究了TiO2薄膜的光电化学性质。经TiO2修饰的p-Si电极,开路光电位增加近20倍,并表现出很强的稳定性,是较理想的光电极材料及光电极修饰材料。  相似文献   

10.
采用共聚法制备了掺杂磺酸的聚苯胺/多壁碳纳米管复合薄膜,并用其对铂电极进行表面修饰而制备出复合膜电极;通过扫描电子显微镜和红外光谱仪对复合膜电极表面的形态和组分进行表征,并采用电化学方法对其导电性和电催化活性进行测试.结果表明:与聚苯胺电极相比,掺杂磺酸的聚苯胺/多壁碳纳米管复合膜电极的表面形态更均匀致密,导电性能显著提高,响应峰电流从145μA增加到1.61mA,表面电荷密度提高了12.1倍,且稳定性也相应提高;复合膜电极具有较高电催化活性,在草酸环境中对抗坏血酸(AA)的线性响应不受干扰,其线性相关系数为0.996 0,灵敏度为9.09A/(mol·cm2),氧化峰的电位差达到340mV,能够明显区分其混合物.  相似文献   

11.
用电化学方法制备了聚苯胺掺杂磷钼杂多酸(PAn/PMo12)膜修饰电极,研究了该电极在溶液中的电化学行为,研究结果表明该膜在酸性溶液中具有良好的稳定性,同时发现在酸性溶液中,该膜对IO3-具有显著的电催化还原作用。  相似文献   

12.
三氯醋酸产生于工业废弃物及水的氯化过程,是重要的环境污染物,对于它的检测,常用的方法比较繁琐,应用血红蛋白-蒙脱土膜修饰热解石墨电极,将血红蛋白包埋于修饰在热解石墨电极上的蒙脱土内,进行循环伏安实验,可以得到血红蛋白的直接电化学响应,在pH4.00.1mol/L柠檬酸缓冲液中,于-0.292V处出现-对准可逆的氧化还原峰(相对于饱和甘汞电极,vs.SCE)经紫外-可见光谱和傅利叶红外光谱测定,包埋在蒙脱土膜内的血红蛋白仍保持与其天然状态相似的二级结构,而且将三氯醋酸加入上述体系中,发现该修饰电极对三氯醋酸具有催化功能,表观米氏常数的测定结果显示,该参数可作为这种电极与底物三氯醋酸作用的酶性质的表征,同时血红蛋白-蒙脱土膜修饰热解石墨电极性质稳定,对于三氯醋酸,显示出了酶样的催化作用特性,特异性高,因此水中虽然存在一些浓度高于三氯醋酸三倍的相关干扰物质的同时,该电极仍显示出了良好的选择性,并具有方便、快捷的特点.还从电化学的角度出发,探讨了血红蛋白-蒙脱土膜的修饰电极在环境污染物三氯醋酸检测中应用的可能性。  相似文献   

13.
采用化学镀的方法在Ni(OH)2粉末表面微包覆一层Co,Ni膜,以此为活性材料 出了与物理掺杂钴方式相比性能更好的Ni(OH)2电极,找出了一种适用于碱性条件下的化学镀活化液。  相似文献   

14.
使用阳极氧化和氨气退火N化的方法制备了N掺杂的TiO2纳米球薄膜和纳米线薄膜.经过N掺杂TiO2纳米线薄膜与未掺杂纳米线可见光区的光吸收强度相差不大,能带宽度从未掺杂样品的3.2eV缩小为3.1eV.TiO2纳米球薄膜在可见光区的光吸收显著增强,能带宽度由未掺杂样品的3.2eV缩小为2.8eV,同时纳米球生长被抑制,其直径约为50nm,明显小于未掺杂TiO2样品的100mn.在可见光照射TiO2氮掺杂纳米线薄膜和纳米球薄膜降解4h后,溶液中亚甲基蓝的浓度分别降至45%和44%,N掺杂样品获得了优异的可见光光催化活性.研究表明N掺杂导致的O空穴浓度增加和能带宽度有效减小是其可见光区光催化活性增强的主要原因.  相似文献   

15.
采用溶胶-凝胶法与浸渍提拉技术在普通玻璃片上制备出纳米铈掺杂的ATO (Ce/ATO)透明薄膜. 利用XRD、SEM、UV-Vis和FL等测试方法对薄膜的结构与性能进行了表征. 结果表明:Ce/ATO薄膜仍保持四方金红石晶相结构,且铈成功地掺杂到ATO中;薄膜表面光滑平整、结构致密,膜层晶粒分布均匀,晶粒尺寸分布为8-12 nm;与ATO薄膜相比, Ce/ATO薄膜在可见光区的透过率有明显增强, 当Ce掺杂量为1 mol%时,薄膜在440 nm-680 nm的透过率超过了空白玻璃;当Ce掺杂量为3 mol%时,薄膜在440 nm-600 nm的平均透过率达到92%以上.  相似文献   

16.
利用电子束沉积方法在玻璃基底上制备了TiO2薄膜及zr掺杂TiOz薄膜.采用拉曼光谱仪和分光光度计对膜的结构和吸收光谱进行了表征;研究结果表明:退火温度为773K时,沉积得到的Ti02薄膜为锐钛矿结构的薄膜;Zr掺杂锐钛矿型TiO2,导致带隙减小,掺杂后在350—450nm附近的光吸收系数增大,TiO2的吸收带产生红移,增强了TiO2的光催化活性;1%掺杂量对光的吸收系数于大5%的掺杂量.  相似文献   

17.
纳米氧化铝模板促进细胞色素c的电催化   总被引:2,自引:0,他引:2  
在草酸溶液中, 通过阳极氧化铝箔制备纳米氧化铝(AAO)模板, 将细胞色素c(Cyt c)固定在纳米AAO模板和4,4-二硫二吡啶(PySSPy)修饰金电极表面, 制得Cytc/Au/AAO/PySSPy薄膜电极. 在pH 6.8的缓冲溶液中, 该电极在0.059 V (vs. Ag/AgCl) 处有一 对准可逆氧化还原峰, 为Cyt c血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰. 在AAO/PySSPy薄膜的微环境中, Cyt c与金电极之间的电子传递加快. 紫外光谱结果表明, Cyt c在AAO薄膜中依然保持其原始构象. 该Cyt c/Au/AAO/PySSPy薄膜电极还可用于过氧化氢的催化还 原.  相似文献   

18.
三种血红素类蛋白质--细胞色素c、肌红蛋白、血红蛋白,被固定在纳米氧化铝-金胶自组装体系修饰玻碳电极表面,紫外光谱实验结果表明固定在纳米氧化铝-金胶表面的蛋白质保持其原始的二级结构不变.用电化学阻抗光谱和循环伏安技术表征了界面的组装过程及其电化学性质,结果表明纳米氧化铝-金胶模板不仅为蛋白质固定提供了良好的环境,而且加快了蛋白质分子与电极之间的电子转移.讨论了扫描速度对细胞色素c电化学行为的影响及其对过氧化氢的电催化还原等性质.  相似文献   

19.
一类巯基衍生卟啉的合成及其电化学性质研究   总被引:1,自引:0,他引:1  
以香草醛、苯甲醛和吡咯为起始原料合成了3种新型尾式巯基卟啉和相应的钴卟啉,用IR、UV-Vis和1HNMR进行了表征.将巯基衍生卟啉自组装在金电极表面,用电化学方法研究了自由碱卟啉和金属卟啉自组膜性质的差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号