首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
针对传统矿井电磁波测距定位存在依赖通信链路的问题,提出了一种基于改进的卷积神经网络VGG-19的井下定位方法.根据基于视觉图像进行识别的原理,将基于深度学习的计算机视觉技术应用于井下定位.不同间隔点位置图像的特征不尽相同,所以对井下的场景进行不同间隔的划分,在所取的间隔点处采集数据集,建立图像信息指纹库;将不同间隔位置点图像进行相应的标记分类,然后用迁移学习的方法将获得的数据集用改进的VGG-19网络进行训练,获得识别分类模型;运用识别分类模型可对不同位置实时图像进行识别,获得采集图像的设备位置数据,从而实现定位.所述定位方法得到的识别分类模型可在嵌入式系统设备运行,定位过程无须通信网络支持,极大简化了系统的复杂性,完全适应矿井灾后恶劣条件,可用于救援机器人等移动装置的井下定位,具有实时性、稳定性、抗干扰性,且有很好的定位准确率.  相似文献   

2.
基于深度学习网络的电气设备图像分类   总被引:1,自引:0,他引:1  
为了对变电站中智能巡检系统采集到的海量图片进行快速分析和识别,提出一种深度学习和支持向量机(support vector machine, SVM)相结合的图像分类模型。首先,运用旋转、翻折等方法对采集到的原始数据进行扩充。然后,合并扩展图像集,并在相同类型的条件下将其随机划分为训练集和测试集。基于实际图像改进卷积神经网络(convolutional neural network, CNN),并提取训练集的图像特征。最后,通过使用训练集图片的深度特征来训练SVM分类器,并且在测试集图片上实现分类测试。利用巡检机器人采集到的8 000张图片对模型精度进行实验验证,结果表明,该模型具有较强的分类性能。  相似文献   

3.
为了准确快速地识别原煤中的煤和矸石,基于机器视觉的方式,采取经典卷积神经网络模型对煤和矸石图像进行识别分类;利用在以实验室环境下采集的小批量煤和矸石图像数据,运用数据增强技术扩充数据集,在深度学习框架中搭建各种经典卷积神经网络模型,对采集的数据集进行训练、验证和测试,获得各经典网络的训练准确率和损失函数曲线,并结合训练...  相似文献   

4.
为了对玉米种子进行无损识别分类,对玉米种子的高光谱图像的光谱信息进行分析,探索高光谱图像技术在玉米种子识别分类上的可行性。利用波长范围为400~1 000 nm的高光谱图像采集系统采集11类共528粒玉米样本的高光谱图像;在每个玉米样本上提取感兴趣区域并获取此区域的平均光谱信息,对光谱曲线进行分析,去除12个奇异样本;结合偏最小二乘判别分析法对所选玉米种子样本识别分类。实验结果表明,在所选玉米样本的识别中训练集样本的识别精度可以达到99.22%,测试集样本的识别精度也达到了94.66%。研究结果表明,不同种类的玉米种子的光谱信息具有一定的差异性,利用高光谱图像技术提取其光谱信息对玉米种子品种进行无损识别分类是可行的。  相似文献   

5.
为解决小样本沥青路面破损图片在分类识别中存在的识别精度差的问题,选择常见的5种路面破损类型,提出了一种基于VGG的浅层深度卷积神经网络模型的路面破损图像分类方法. 首先,将采集到的图像集进行预处理并自制成数据集. 其次,设置三种不同的批处理量尺寸和两种不同的网络层数作训练,选择最适合该网络模型的尺寸,得到浅层VGG模型. 将处理后的路面图片直接作为模型的输入,作模型的训练、验证及测试. 最后,将模型试验结果与支持向量机及目前主流的深度卷积神经网络模型的试验结果进行对比. 结果表明:浅层VGG模型在训练集、验证集及测试集的分类准确率接近,对路面破损图像的分类识别准确率都达到98%以上,表现出模型良好的识别能力;与支持向量机及目前主流的网络模型试验结果相比,浅层VGG网络模型训练耗时少且泛化能力更强,模型提取到的特征更丰富,可获得更加全局的信息. 可见,浅层VGG模型在对小规模图像的分类识别中具有显著优势,同时相比其他方法更具鲁棒性,结果更精确.  相似文献   

6.
传统地形识别算法,主要建立在人工提取特征和训练分类器的前提上,其通用能力有限且准确度不高,或者需要大量的数据集训练基础,这种方法训练的网络模型参数较大且预测耗时较长,不利于移植到移动端。因此,运用迁移学习思想,提出了一种基于深度迁移网络的地形识别算法。采用轻量级卷积神经网络MobileNetV3,在爬虫获取和自建适量数据集基础上,对神经网络进行迁移学习。首先,采用图像分类数据集ImageNet上的预训练成果,根据预训练模型权重对MobileNetV3网络进行初始化,实现对模型大规模共享参数的迁移;然后,通过在自建数据集GXU-Terrain6上进行新的训练,微调模型参数,进而得到新的分类模型;最后,利用训练好的模型对地形类别进行预测,从而完成识别任务。提出算法在GXU-Terrain6测试集上取得了93.00%的平均预测准确率。实验结果表明,基于深度迁移的地形识别算法运用较少数据,可获得较高的识别准确率,网络实时性好,适合向移动端移植。  相似文献   

7.
为了对灾难场景图像进行快速分析和识别,提出了一种基于多分辨率卷积神经网络和残差注意力机制(attention module)相结合的图像分类模型.首先,对灾难场景数据集进行预处理,在相同类型的条件下将其随机划分为训练集和测试集.基于改进的卷积神经网络(convolutional neural network,CNN),提取训练集的图像特征.使用训练集图片的特征进行训练,并且在测试集图片上实现分类测试.选取DenseNet、Xception和MobileNetV2三种模型,以灾难场景数据集(Disaster_Data_Scenes)为数据集进行实验验证.结果表明:改进的Xception和MobileNetV2网络在灾难场景数据集上进行的图像分类实验测试,比原网络精度分别提升了4.56%和3.04%.其中改进的DenseNet网络比原网络模型精度分别提升9.13%、17.88%和10.27%.可见改进的卷积神经网络模型的分类精度得到有效提高.  相似文献   

8.
为了得到更理想的图像分类结果,提高图像分类的效率,提出一种核主成分分析与相关向量机(RVM)相融合的图像分类算法.首先采集大量图像,建立图像数据库,并提取图像特征;然后采用核主成分分析对图像进行选择和降维,减少图像特征数量,消除作用较小的特征;最后通过相关向量机的训练构建图像分类器.采用3个图像数据集进行图像分类实验,实验结果表明,对于3种标准图像数据库的图像,该算法的图像分类正确率大于95%,远高于其他算法的图像分类正确率,且图像分类速度可以满足图像的实际应用要求.  相似文献   

9.
针对传统流量分类方法(基于端口和有效载荷)分类不可靠的问题,提出基于C4.5决策树算法,根据训练集中属性的信息增益比率构建分类模型,按属性对测试数据集进行预测,通过查找分类模型实现对网络流量的分类。在公开数据集和自己采集的数据集上进行实验,结果表明,采用C4.5决策树算法对网络流量分类,平均分类精度为93%,单类别分类精度均在90%以上,能有效地实现对网络流量应用类型的识别。  相似文献   

10.
该发明提出一种基于Fisher Vector的图像精细分类方法,用以解决现有图像精细分类方法中存在分类准确率低的技术问题,包括如下步骤:读取图像库数据,得到包含各个类别的训练图像集和测试图像集;提取训练图像集和测试图像集中每幅图像的RGB特征;求取关于训练图像集RGB特征描述的混合高斯参数;求取匹配图像块集的Fisher Vector特征矢量;求取训练图像集的最终特征描述和测试图像集的最终特征描述;利用SVM对训练图像集的最终特征描述进行训练,得到分类模型;利用分类模型对测试图像集的最终特征描述进行分类。该发明具有分类准确率较高的优点,可应用于互联网通信、交通和公共安全领域。  相似文献   

11.
为了进一步提高三维模型的识别精度,提出了一种基于深度卷积神经网络的三维模型识别方法。将点云数据通过占用网格规范化计算转化为二值3D体素矩阵,通过附加正则化项的随机梯度下降算法提取体素矩阵的特征,再通过共享权重的旋转增强对训练集进行数据增广并以此对模型标签进行预测。实验结果表明,该算法在公开数据集ModelNet40及悉尼城市模型数据集上的识别精度均达到85%左右。与基于同类机器学习的三维模型识别算法相比,在相同训练数据集上该方法网络训练时间短,在相同测试数据集上模型识别准确率高,检索速度快。提出的体素占用网格模型的深度卷积神经网络,可以实现三维点云模型数据集及规范化体素模型数据集的识别和分类工作。  相似文献   

12.
为了在数据集过小时更好的训练卷积神经网络,本文提出一种方法通过训练GAN(生成对抗网络)生成新的样本进行图像数据增强。扩充后的数据集应用于训练图像分类模型,得到了不错的效果。针对Herlev宫颈细胞数据集的二分类问题,本文首先使用原始训练集训练GAN,生成了大量高质量的高分辨率细胞图像,将每类训练集扩充到24 000例。然后使用扩充后的训练集进行分类网络训练,在Resnet迁移学习的验证集准确率高达97%,高于仿射变换扩充的数据集的训练结果93%,可见本文方法可以有效地实现图像的数据增强。本文方法也可用于其他领域的图像数据增强。  相似文献   

13.
远程监督(Distant Spervision,DS)数据集中存在大量错误标注的数据,而现有的DS数据集去噪方法通常只考虑针对具有标签的数据进行去噪,没有充分利用无标签数据,导致去噪效果不佳。本文提出一种新型DS数据去噪模型——Pattern Reinforcement Learning Model (PRL模型):首先利用基于关系模式的正样例抽取算法提取DS数据集中高质量的有标签数据;然后利用Filter-net作为分类器,提取DS数据集中高质量的无标签数据;最后将高质量的有标签数据和无标签数据作为深度强化学习(Reinforcement Learning,RL)方法的训练数据集,获得去噪效果更好的远程监督数据集。将PRL模型应用于New York Times(NYT)数据集,并以去噪后的数据集来训练PCNN+ONE、CNN+ATT、PCNN+ATT 3个模型。实验结果表明,经过PRL模型对数据集进行去噪后,这些模型的性能得以提升。因此,PRL模型是一种轻量的数据去噪模型,可以提升基于深度神经网络模型的性能。  相似文献   

14.
传统的边缘检测方法具有一定的局限性,且自适应能力差,提出一种基于机器学习的边缘检测方法来解决上述问题.实验图像从伯克利图像数据库中选取,以Harr和梯度直方图(HoG)构成特征空间,将AdaBoost算法和决策树算法相结合进行分类器训练.实验结果表明,机器学习的边缘检测算法有更高的分类准确率.  相似文献   

15.
基于神经网络原理,建立预测泡沫混凝土性能的BP神经网络模型,期望通过输入配合比主要参数,得到泡沫混凝土强度及导热性能的预测结果。将实验数据分为训练组和对照组,对训练组进行非线性拟合,若拟合结果满足误差精度则模型建立完毕;通过拟合结果与对照组的比较,可验证模型预测精度。结果表明,BP神经网络模型能够准确拟合实验数据,利用其泛化能力进行预测的结果与对照组的误差小于8%,该模型具有很高的预测精度。  相似文献   

16.
针对双关语样本短缺问题,研究提出了基于伪标签和迁移学习的双关语识别模型(pun detection based on Pseudo-label and transfer learning)。该模型利用上下文语义、音素向量和注意力机制生成伪标签;然后,迁移学习和置信度结合挑选可用的伪标签;最后,将伪标签数据和真实数据混合到网络中进行训练,重复伪标签标记和混合训练过程。一定程度上解决了双关语样本量少且获取困难的问题。使用该模型在SemEval 2017 shared task 7以及Pun of the Day数据集上进行双关语检测实验,结果表明模型性能均优于现有主流双关语识别方法。  相似文献   

17.
为了提高SVM在大规模数据集上的训练效率和检测精度,对训练数据预处理后进行无监督聚类,通过一定规则选取对训练SVM有用的样本向量,并结合改进的AdaBoost算法来增强SVM在大规模数据的分类和泛化能力,最后通过Kdd Cup 99数据进行实验验证算法性能.  相似文献   

18.
为向基于深度学习的机器翻译质量估计模型提供高效的训练数据, 提出面向目标数据集的伪数据构造方法, 采用基于伪数据预训练与模型精调相结合的两阶段模型训练方法对模型进行训练, 并针对不同伪数据规模设计实验。结果表明, 在构造得到的伪数据下, 利用两阶段训练方法训练得到的机器翻译质量估计模型给出的得分与人工评分的相关性有显著的提升。  相似文献   

19.
为提高旋转机械故障识别精度,将神经网络与集成学习方法进行结合,提出结合扰动方式的集成RBF故障模式识别方法.首先,通过ReliefF算法计算所提取出的转子故障特征数据集各个特征的权重,并且将权重值进行降序排列,从而筛选出权重趋大的系列特征构成低维特征数据集;其次,将较大权重作为无放回轮盘赌法的输入,对权重所对应的低维特征数据集进行特征扰动,产生系列化低维数据子集并将其划分为训练集和测试集;然后,采用Bagging算法中的自助采样法对训练集进行样本扰动,以此形成新的训练集并用于训练对应个数的RBF神经网络,完成差异性子分类器的构建;最终,对各个神经网络的测试数据辨识结果通过相对多数投票法进行结合,得到故障识别结果.实验结果表明,对于转子系统的故障识别,该方法相较于未集成RBF神经网络、集成BP神经网络具有较高的识别精度,并且拥有较好的泛化性能.  相似文献   

20.
基于匹配追踪算法,对地震道集吸收和频散进行补偿。首先,运用匹配追踪算法对叠前道集作匹配分解,以零偏移距匹配子波建立随子波中心时间和中心频率乘积值变化的振幅衰减曲线,进而得到不同匹配子波衰减振幅的增益系数;然后,基于射线路径获取零偏移距吸收衰减与非零偏移距吸收衰减间的关系,运用零偏移距振幅增益系数与道集角度计算各个角度地震道的匹配子波振幅增益系数;最后,用振幅增益系数对不同匹配子波衰减振幅分别进行吸收补偿,并重构地震信号;对于频散影响,通过匹配子波求取品质因子进行频散校正。数据资料测试发现,深部吸收衰减能量得到有效补偿,同时消除了吸收对振幅随偏移距变化特征的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号