首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
研究了一类奇异二阶阻尼差分方程周期边值问题{Δ2x(t-1)+αΔx(t-1)+βx(t)=f(t,x(t), Δx(t-1)), t∈[1,T]Z,x(0)=x(T), Δx(0)=Δx(T)正解的存在性,其中T >2是一个整数, α、 β均为常数, f(t,x,y):[1,T]Z×(0,∞)×R→R关于(x,y)∈(0,∞)×R连续且允许f在x=0处奇异即limx→0+ f(t,x,y)=+∞,(t,y)∈[1,T]Z×R。主要结果的证明基于Leray-Schauder非线性抉择。  相似文献   

2.
应用锥上的不动点指数理论获得了二阶变系数离散Neumann边值问题■正解存在的条件,其中■且q(t)?0,f:■连续,[1,T]Z:={1, 2,…,T},R+:=[0,∞).  相似文献   

3.
考虑一类非线性三阶差分方程Δ3u(t-3)+αΔ2u(t-2)+βΔu(t-1)=f(t,u(t)), t∈[3,T]Z正周期解的存在性和多解性, 其中 T>4, α>0, -1<β<0, f:[3,T]Z×[0,∞)→R关于 u∈[0,∞)连续, f(t+ω,u)=f(t,u), ω∈Z+。主要结果的证明基于Guo-Krasnoselskii 不动点定理。  相似文献   

4.
用非负上凸函数的Jensen不等式和不动点指数理论讨论一类非线性差分方程组边值问题正解的存在性,得到了二阶差分方程组Dirichlet边值问题■正解存在的充分条件,其中[1,T]?∶={1,2,…,T},T≥2是一个整数;Δu(t)=u(t+1)-u(t)为前向差分算子;f,g:[1,T]?×[0,∞)×[0,∞)→[0,∞)连续.  相似文献   

5.
令H为无限维复可分的Hilbert空间,B(H)为H上有界线性算子的全体.称算子T∈B(H)满足Browder定理,若σ(T)\σw(T)?π00(T)或σw(T)=σb(T);若σ(T)\σw(T)=π00(T),称T满足Weyl定理,其中σ(T),σw(T),σb(T)分别表示算子T的谱集、Weyl谱、Browder谱,π00(T)={λ∈iso σ(T):0相似文献   

6.
令H为无限维复可分的Hilbert空间,H上有界线性算子的全体为B(H).用σ(T),σab(T)和σa(T)分别表示为算子T∈B(H)的谱集,Browder本质逼近点谱和逼近点谱.称算子T∈B(H)满足(R)性质,若σa(T)σab(T)=π00(T),其中π00(T)={λ∈iso σ(T)∶0相似文献   

7.
用Krasnoselskii不动点定理给出带非线性边界条件的一类离散梁方程正解的存在性结果, 其中: λ>0为参数; h: [2,T]Z→[0,∞)为函数; f: (0,∞)→R连续且在u=0处允许有奇性, 在u=∞处超线性增长.  相似文献   

8.
称有界线性算子 T满足(ω1)性质, 如果T的上半Weyl谱在它的逼近点谱中的补集包含在它的谱集中孤立的有限重的特征值的全体中。根据单值扩张性质定义了一种新的谱集, 利用该谱集给出了Hilbert 空间中有界线性算子满足(ω1)性质的充分必要条件。作为应用, 给出了亚(或超)循环算子类满足(ω1)性质的等价刻画。  相似文献   

9.
令H为无限维复可分的Hilbert空间, B(H)为H上有界线性算子的全体。 若σa(T)\σea(T)=πa00(T),称算子T∈B(H)满足a-Weyl定理,其中σa(T)、σea(T)分别表示T的逼近点谱、本质逼近点谱, πa00(T)={λ∈iso σa(T):0a-Weyl定理的新的判定方法, 并讨论相关谱集的谱映射定理。  相似文献   

10.
设H为无限维复可分的Hilbert空间, B(H)为H上的有界线性算子的全体。 T∈B(H)称为是满足a-Weyl定理, 若σa(T)\σaw(T)=πa00(T), 其中σa(T), σaw(T)分别表示算子T∈B(H)的逼近点谱和本质逼近点谱, πa00(T)={λ∈iso σa(T):0<dim N(T-λI)<∞}。 本文通过定义新的谱集, 给出了算子演算满足a-Weyl定理的判定方法, 同时也考虑了a-Weyl定理的摄动。  相似文献   

11.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

12.
主要讨论了加权Hardy-Littlewood 平均算子$U_{\psi}$与BMO函数$b$生成的交换子在Herz型空间和Morrey型 Herz空间上的有界性,并给出了其在Morrey型 Herz空间上有界的充分条件是 $\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt\infty.$ 若$\alpha=0$,$\lambda=0$,$q_1=q_2=p1$,则$\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt=\int_0^1t^{-n/p}\psi(t)\log{\frac{2}{t}}dt\infty$, 此时交换子$U_{\psi}^b$是$L^p(R^n)$空间上的有界算子.  相似文献   

13.
本文运用Dancer全局分歧定理研究了带参数的一阶周期边值问题■正解的全局结构,获得了正解存在的最优区间.其中r为正参数,f∈C(R,R),a∈C([0,1],[0,∞)),且a(t)在[0,1]的任意子区间内不恒为0.  相似文献   

14.
本文研究了一类一阶差分方程周期边值问题-Δx(t)+q(t)x(t)=λa(t)x(t)+f(t,x(t))x(t),t∈T,x(0)=x(T)正解连通分支的振荡及无穷多个正解的存在性,其中λ0是参数,T2是整数,T:={0,1,…T-1},q:T→[0,∞),a:T→(0,∞),f:T×R→R连续,f(t,0)=0.主要结果的证明基于Rabinowitz全局分歧定理.  相似文献   

15.
研究带有强阻尼时滞项的m-Laplacian型波方程:utt-Δmu-Δu+g*Δu-μ1Δut(x,t)-μ2Δut(x,t-τ)=(u)p-2u解的爆破:当初始能量00,ν>0,t≥0),在(0,t)...  相似文献   

16.
设Z/p~nZ是模p~n剩余类环.本文证明了U={f(x)∈Z/p~nZ[x]|f(a)≡0(modp~n),■a∈Z}是自由生成的Z/p~nZ-模,给出了它的一组基,还证明了商环(Z/p~nZ[x])/U是有限环,并通过这组基确定了商环(Z/p~nZ[x])/U中的元素个数.  相似文献   

17.
本文研究了二阶和四阶常微分方程耦合系统u~((4))(t)=λf(t,v(t)),t∈(0,1),-v″(t)=λg(t,u(t)),t∈(0,1),u(0)=u(1)=u″(0)=u″(1),v(0)=v(1)正解的存在性,其中λ0为参数,f,g∈C([0,1]×[0,∞),R).当f,g满足适当的条件时,本文证明了λ充分大时方程一个正解的存在性.主要结果的证明基于Schauder不动点定理.  相似文献   

18.
本文研究了带有导数项的非线性~Newmann~问题 $$ \left\{\begin{array}{ll} u''(t)+ku(t)=f(t,u(t),u''(t)),\quad t\in (0,1),\\[2ex] u''(0)=u''(1)=0 \\[2ex] \end{array}. \right.\eqno $$ 其中~$0相似文献   

19.
本文获得了二阶周期边值问题{u″(t)-k2u+λa(t)f(u)=0,t∈[0,2π],u(0)=u(2π),u′(0)=u′(2π)正解的全局结构,其中k0为常数,λ是正参数,a∈C([0,2π],[0,∞))且在[0,2π]的任何子区间内a(t)≠0,f∈C([0,∞),[0,∞)).主要结果的证明基于Rabinowitz全局分歧理论和逼近方法.  相似文献   

20.
本文利用不动点指数理论证明了一类非线性二阶~Robin~问题 $$ \left\{\begin{array}{ll} u''(t)-k^{2}u(t)+\lambda f(u(t))=0, ~~\ \ \ t\in (0,1),~~k\neq0,\\[2ex] u''(0)=0,~~u(1)=0 \end{array} \right. $$ 多个正解的存在性,~其中~$f:[0,\infty)\rightarrow [0,\infty)$~为连续函数且有多个零点,~$\lambda >0$~为参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号